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Abstract—Spacecraft formation-flying and swarm missions have
received great attention in the space sector over the past few
decades. Some modern multi-satellite missions require the use of
an eccentric orbit to access varying altitudes, new ground tracks,
and a lower perturbation environment. The use of a distributed
mission architecture becomes more challenging in eccentric or-
bits due to the increased complexity of relative motion dynamics,
and important mission considerations such as passive safety, dif-
ferential perturbation modeling, and efficient impulsive control
become more difficult to resolve in closed-form. This paper in-
troduces a new state representation denoted Eccentric Relative
Orbit Elements (EROE) to address these issues. The EROE
provide an insightful geometric tie into relative position and
velocity in eccentric orbits, revealing closed-form expressions for
passive safety. Leveraging the fact that EROE are functions of
orbit elements, state transition matrices including differential
J2, solar radiation pressure, and third body perturbations are
also presented. Finally, this paper maps the EROE state onto
an existing impulsive control methodology to compute maneuver
schemes in closed-form. Using the advantages provided by the
chosen state representation, design and maintenance strategies
are proposed for swarms, all of which require little computa-
tional effort. These results are applied to the mission design
and simulation of a conceptual three-spacecraft swarm mis-
sion denoted the Mars Gravity Experiment. Simulation results
demonstrate over two orders of magnitude improved positional
accuracy over short time periods when using the STMs provided
in this paper compared to Yamanaka-Ankersen, and delta-v
budgeting is accurate within 0.5% of nonlinear simulation.
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1. INTRODUCTION
Distributed Space Systems (DSS) are of increasing interest to
the space community due to their ability to achieve a variety
of capabilities either more challenging or not possible with
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a single spacecraft. Spacecraft formation-flying and swarms
are a class of DSS architectures in which multiple spacecraft
operate in close proximity to achieve certain objectives. For
example, the Starling Formation-Flying Optical Experiment
(StarFOX), the Space Weather Atmospheric Reconfigurable
Multiscale Experiment (SWARM-EX), and the Virtual Su-
per Optics Reconfigurable Swarm (VISORS) utilize such
architectures to enable new optical navigation technologies,
perform aeronomy research, and increase focal length of
coronagraph imaging, respectively [1] [2] [3]. Note that all
the missions above operate in Low Earth Orbit (LEO).

These distributed architectures require additional mission
design considerations compared to monolithic architectures
such as collision avoidance, inter-satellite communication,
and relative orbit design. Furthermore, recent trends indi-
cate that the interest in using eccentric orbits is increasing.
The Escape and Plasma Acceleration and Dynamics Ex-
plorers (EscaPADE), the Magnetospheric Multiscale Mission
(MMS), and the HelioSwarm mission all use eccentric orbits
to take magnetosphere measurements at varying altitudes
[4] [5] [6]. Other missions such as the Miniaturized Dis-
tributed Occulter-Telescope Mission (mDOT) and the Proba-
3 mission use eccentric orbits to access lower perturbation
environments during precision alignment [7] [8]. Overall,
the combination of additional ground tracks and altitudes
sometimes makes the use of an eccentric orbit necessary. In
addition, the lower perturbation environment in many eccen-
tric orbits offers a significant increase in relative navigation
and control accuracy.

The dynamics of relative motion in eccentric orbits are more
complicated than in circular orbits. Therefore, a number
of challenges which have already been resolved for circular
orbits still pose problems for eccentric orbits. One of these
issues is the lack of closed-from passive safety guarantees.
Passive safety is defined as a guaranteed minimum separation
between two spacecraft over a prescribed amount of time and
in the absence of control. The most prominent method that
provides such a guarantee is Sequential Convex Programming
(SCP), but it does not do so in closed-form and requires sig-
nificant computational effort. Lyapunov control with artificial
potentials provides another method, but is limited to using
continuous control and relies on ”soft” separation constraints
which can be violated [9]. Passive safety guarantees for large
swarm designs is also a challenge, because the number of
checks grows O(n2) for n spacecraft.

Another challenge is the closed-form inclusion of perturba-
tions in relative motion dynamics. In this paper, the term
closed-form refers to analytical or semi-analytical solutions
that are computationally cheap and provide insight into the
model. When using a Cartesian state representation such as
the Yamanaka-Ankersen state transition matrix (STM), per-
turbations are typically neglected [10]. Perturbations such as
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differential J2, solar radiation pressure, and third body effects
have significant impacts on relative motion in eccentric orbits,
degrading the accuracy of such STMs.

Closed-form passive safety and perturbations are addressed
in the literature in circular orbits through the use of Relative
Orbit Elements (ROEs). ROEs are state representations
defined in terms of orbit elements of two spacecraft. Existing
nonlinear ordinary differential equations (ODE) for the drift
of orbit elements under perturbations can be substituted into
ROE states and linearized in order to acquire more accurate
analytical models for relative motion. Some ROE definitions
also have convenient ties to relative orbit geometry, which
reveal closed-form expressions that guarantee passive safety
for a large number of spacecraft [11]. However, the ROEs
in the literature fail to provide this latter advantage in eccen-
tric orbits, because the geometric map between these ROEs
and Cartesian states becomes prohibitively complicated when
generalizing to eccentric orbits. In particular, the expressions
which have previously been derived all rely on a normaliza-
tion by varying orbit radius. This makes it difficult to derive
analytical expressions for meaningful design metrics such as
minimum separation [12] [13].

This paper addresses the challenges of closed-form model-
ing and control of close-proximity distributed space systems
through the use of a new relative orbit element definition.
This definition addresses the geometric mapping problem
through its close relation to the integration constants of the
Yamanaka-Ankersen STM, which is normalized by semi-
major axis rather than orbital radius. We refer to this new
state representation as the eccentric relative orbit elements,
or EROEs. This simple and fundamental tie between EROEs
and relative position and velocity enables the derivation of
closed-form guarantees of passive safety, which simplifies
swarm design and control in eccentric orbits. In addition, in-
plane and out-of-plane motion and control become decoupled
when working in EROE states, allowing for these two prob-
lems to be addressed separately.

Like all other ROE states, state transition matrices that in-
clude perturbations can be derived for the EROEs. This paper
considers the three most significant perturbations in stable
eccentric orbits: J2, solar radiation pressure, and third body
perturbations. Considering these perturbations in a closed-
form manner makes swarm maintenance scheduling more
predictable, and reveals interesting formation designs that
remove certain modes of motion under perturbations.

Finally, this work demonstrates how reachable set theory can
be applied in order to create semi-analytical impulsive ma-
neuver schemes in eccentric orbits. Combining this control
methodology with closed-form swarm maintenance enables
long term and rapid ∆v budgeting.

The closed-form modeling and control solutions provided in
this paper are applied to the mission design of a conceptual
mission known as the Mars Gravity Experiment (MGE).
MGE demonstrates how EROEs can be applied to the design
of a swarm mission’s relative orbits. A comparison of the
closed-form models against nonlinear simulation provides
insight into the performance of the state transition matrices
and control schemes.

2. BACKGROUND
This section details the relevant astrodynamics background
for this paper, as well as the state of the art in linear models
of relative motion and relative orbit elements. Contributions
are built off of the content in this section.

Orbit Elements

A spacecraft’s orbit is typically parameterized in an inertial
reference frame around its central body. There are two sets
of orbit elements used interchangeably in this paper. The
singular orbit elements, denoted by α, are a (semi-major
axis), e (eccentricity), i (inclination), Ω (right ascension of
the ascending node), ω (argument of periapsis), andM (mean
anomaly). They are called such because at zero eccentricity,
mean anomaly and argument of perigee are not defined. The
quasi-nonsingular orbit elements α∗ are given as

α∗ =


a
u
ex
ey
i
Ω

 = f(α) =


a

M + ω
e cos(ω)
e sin(ω)

i
Ω

, (1)

where u is the mean argument of latitude, and ex and ey are
the x and y components of the eccentricity vector. α∗ is well
defined in circular, non-equatorial orbits.

RTN Reference Frame

For spacecraft relative motion, Hill’s orbital frame, or the
RTN frame, is a common choice in which to parameterize
a ”deputy” spacecraft’s motion with respect to a ”chief”
spacecraft. The RTN frame’s x axis is aligned with the chief’s
position vector r with respect to its central body. The z axis
is aligned with the chief’s angular momentum vector, and the
y axis completes the right-handed triad. The RTN frame is
shown in Figure 1.

Figure 1: RTN reference frame.

The Cartesian state vector for relative position, δr, and
relative velocity, δv, of a deputy with respect to its chief in
the RTN frame is given as

[
δr, δv

]⊤
=
[
x, y, z, ẋ, ẏ, ż

]⊤, (2)
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where x, y, and z are the positions along the R̂, T̂ , and N̂
axes, respectively. ẋ, ẏ, and ż are the time derivatives taken
with respect to the RTN frame. This state representation is
used in most relative motion models in the literature.

Clohessy-Wiltshire State Transition Matrix

The first linear model for spacecraft relative motion was intro-
duced in the 1960s by Clohessy and Wiltshire in the context
of rendezvous [14]. This model uses the state representation
in Equation 2. This state transition matrix (STM) ΨCW is
provided in Equation 64 in the Appendix. This model is
initialized by a set of integration constants (IC) K1 through
K6. The IC can be transformed into initial relative position
and velocity coordinates by inverting the matrix in Equation
64. Note that if K1 = 0, spacecraft relative motion is
bounded and periodic. If K2 = 0, deputy relative motion
is centered around the chief spacecraft.

Relative Orbit Elements

Relative Orbit Elements (ROE) are a set of relative motion
state representations defined as a function of the orbit el-
ements of two spacecraft. The most straightforward ROE
definition is simply the difference between the deputy and
chief singular orbit elements. Casotto and Shaub demonstrate
that at small inter-spacecraft separations, such a definition has
an intrinsic connection to the relative position and velocity of
a deputy spacecraft with respect to the chief [15] [16]. One
popular choice of ROE is introduced by D’Amico in terms of
quasi-nonsingular orbit elements [17]. The ROE definition,
denoted δαc is provided as

δαc =


δac

δλc

δecx
δecy
δicx
δicy

=


(ad − a)/a
ud − u+ (Ωd − Ω) cos(i)

ed,x − ex
ed,y − ey
id − i

(Ωd − Ω) sin(i)

 , (3)

where the subscript d indicates deputy orbit elements, and
no subscript indicates chief orbit elements. δa is the relative
semi-major axis, δλ is the relative longitude, δex and δey are
the x and y components of the relative eccentricity vector δe,
and δix and δiy are the x and y components of the relative
inclination vector δi. The c superscript is used to distinguish
this ROE definition, which is often applied in circular orbits,
from other definitions. δαc shares a first order equivalence
with the integration constants of the Clohessy-Wiltshire STM
through the relation [17]


K1

K2

K3

K4

K5

K6

 =


1 0 0 0 0 0

3
2
(u− u0) 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




δac

δλc

δecx
δecy
δicx
δicy

 (4)

The term u − u0 represents the elapsed mean argument of
latitude of the chief. Due to this relation, δαc is a useful state
representation as it provides geometric insight into spacecraft
relative motion in circular orbits. This property is not shared
by Cartesian state representations. The only time-dependent
part of this relation is due to the drift in relative longitude,
δλ. K2 = δλ0 represents the initial relative longitude, and
a nonzero relative semi-major axis, δa, causes δλ to drift
linearly in time.

δαc can be controlled through impulsive maneuvers. In the
case of a near-circular orbit, the effects of a ∆v in the RTN

frame applied at a mean argument of latitude u is [18]

∆δαc =
1

na


0 2 0
−2 0 0

sin(u) 2 cos(u) 0
− cos(u) 2 sin(u) 0

0 0 cos(u)
0 0 sin(u)


∆vR∆vT
∆vN

 (5)

Notice the full decoupling of in-plane and out-of-plane ma-
neuvers to the first order. This makes control of δαc simpler
in near-circular orbits. Although applicable, these equations
do not retain this decoupling in eccentric orbits, making
control of δαc more challenging [19].

Yamanaka-Ankersen State Transition Matrix

Yamanaka and Ankersen present a generalization of the
Clohessy-Wiltshire state transition matrix to eccentric orbits
[10]. The original derivation is parameterized in terms of true
anomaly, which is not defined in circular orbits. Guffanti,
Willis, and D’Amico present a transformation of the original
matrix such that it is parameterized in terms of true argument
of latitude, θ = ω + ν, where ν is the true anomaly [20]
[12]. The resultant STM ΨY A is valid for both circular and
eccentric orbits and is given in the Appendix in Equation
65. This model is initialized by a set of integration constants
denoted C1 through C6. Note that Equation 65 simplifies to
Equation 64 at zero eccentricity, because the singular terms
go to zero for strictly circular orbits. This form of the
Yamanaka-Ankersen STM is considered the state of the art
in linear Cartesian models of relative motion, and will be
referenced throughout the paper.

3. ECCENTRIC RELATIVE ORBIT ELEMENTS
The Eccentric Relative Orbit Elements (EROE) are intro-
duced in this paper as a new state representation for spacecraft
relative motion. Their primary advantage is that they are
defined such that they share a first order equivalence with the
integration constants of the Yamanaka-Ankersen STM. This
feature enables an insightful geometric mapping from EROE
states to relative position and velocity in eccentric orbits. This
differs from the ROE definition in Equation 3, which only
provides such an insight in circular orbits.

Definition

The singular definition of the EROEs is

δα =


δa
δλ
δex
δey
δix
δiy

=


η2(ad − a)/a
1
η
(Md −M) + η2[ωd − ω + (Ωd − Ω) cos(i)]

(ed − e) cos(ω) + e
η
(Md −M) sin(ω)

(ed − e) sin(ω)− e
η
(Md −M) cos(ω)

η2(id − i)
η2(Ωd − Ω) sin(i)

 ,
(6)

where η =
√
1− e2. δα shares a first order equivalence with

the integration constants of the Yamanaka-Ankersen STM in
Equation 65. This relation, which is derived by inverting
Equation 10, is given as


C1

C2

C3

C4

C5

C6

 =



1 0 0 0 0 0
3nt
2η3 1 0 0 0 0

3eynt

2η3 0 1 0 0 0

− 3exnt
2η3 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1




δa
δλ
δex
δey
δix
δiy

 (7)
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where n is the mean motion of the chief and t is the elapsed
time. In eccentric orbits, three of the EROE drift under
a nonzero δa and must be propagated back to their initial
conditions to match with the integration constants. This is
expected because δλ, δex and δey are all functions of mean
anomaly. More information about these dynamics is given in
Section 3-C.

Geometry

Substituting Equation 7 into 65 provides a direct map be-
tween EROE and relative position and velocity in the RTN
frame with associated insight into the geometry of relative
motion. δe and δi can also be expressed in phase-amplitude
form as

δe =
[
δex
δey

]
=

[
δe cos(ψ)
δe sin(ψ)

]
, δi =

[
δix
δiy

]
=

[
δi cos(ϕ)
δi sin(ϕ)

]
, (8)

where δe and δi are the L2 norms of δe and δi, and ψ and ϕ
are the phase angles of the relative eccentricity and inclination
vectors which are computed by an arctangent. Substituting
Equation 8 into the Yamanaka-Ankersen STM in Equation
65 yields a map between EROE states and relative position as

x

a
=

1

k
δa− δe cos(θ − ψ)

y

a
=

1

k
δλ+ (

1

k
+ 1)δe sin(θ − ψ)

z

a
=

1

k
δi sin(θ − ϕ)

(9)

Note that k = 1 + ex cos(θ) + ey sin(θ) = 1 + e cos(ν).
Equation 9 is worth comparing and contrasting with the maps
of other ROE definitions. The ROEs introduced by Sullivan
and D’Amico provide a geometric map in eccentric orbits
as well; however, their Cartesian states are normalized by
varying orbit radius [13]. The same applies to the map
between the ROEs in Equation 3 and relative position in
eccentric orbits, as shown by Willis and D’Amico [12]. The
fact that Equation 9 is normalized by semi-major axis rather
than radius is a major advantage of the ROE definition in this
paper, along with the increased simplicity of these equations
compared to other mappings in the literature.

The geometry defined by Equation 9 for δa = 0 is shown in
Figures 2 and 3.

Figure 2: Relative position is depicted in the orbit plane of
the chief (RT) for a fixed value of k.

Figure 3: Relative position is depicted in the plane perpen-
dicular to along-track (T) for a fixed value of k.

In circular orbits, k = 1 and the motion of the deputy follows
an elliptical path around the chief in both the RT and RN
planes. However, in eccentric orbits, k causes these ellipses
to oscillate. Both along-track and cross-track motion gets
compressed and expanded over the course of an orbit, with k
reaching a minimum value of 1− e at ν = π and a maximum
value of 1 + e at ν = 0. Examples of the resultant geometry
are given by Willis for IC states [12], and in Figure 4 for
different phase parameters ω − ψ and eccentricities e.

Figure 4: In-plane relative motion for different δe phases and
absolute orbit eccentricities.

Keplerian Dynamics

As discussed in Section 3-A, δλ, δex, and δey all drift under
Keplerian dynamics when δa ̸= 0. These dynamics are given
as 

δa
δλ(t)
δex(t)
δey(t)
δix
δiy

 =



1 0 0 0 0 0

− 3nt
2η3 1 0 0 0 0

− 3eynt

2η3 0 1 0 0 0
3exnt
2η3 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1




δa

δλ(0)
δex(0)
δey(0)
δix
δiy

, (10)

where n =
√
µ/a3 is the mean motion. Note the similarity

between Equations 10 and 7, where the IC map represents
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a back-propagation and the Keplerian dynamics represent
a forward-propagation. In circular orbits, it can also be
observed that only δλ will drift under Keplerian dynamics.
The direction of δe drift is determined by the location of the
argument of periapsis ω. As ω rotates due to J2 perturbations
(see Section 5), the effect of a nonzero δa will vary greatly in
eccentric orbits.

Quasi-Nonsingular Definition

A limitation of the EROE definition in Equation 6 is that
it is not defined in circular orbits. Some missions, which
might transition between circular and eccentric orbits, would
find a quasi-nonsingular ROE state useful. The quasi-
nonsingular definition of the EROE is given in Equation 66
in the Appendix. δα∗ shares a first order equivalence with
δα and therefore the map to Yamanaka-Ankersen integration
constants in Equation 7 is still valid. Note that at small
eccentricities, δα∗ reduces to δαc as O(e2) terms go to zero.
In fact, this definition represents a generalization of δαc to an
orbit of arbitrary eccentricity. Nevertheless, the complexity of
Equation 66 shows that using singular orbit elements provides
a more natural EROE definition. Therefore, this paper will
use the singular definition of the EROE, δα. All equations
derived for δα will also apply to δα∗ in the first order.

4. PASSIVE SAFETY
This section addresses the problem of passive safety in ec-
centric orbits in closed-form by providing guarantees of a
minimum inter-spacecraft separation analytically. This is
done separately for in-plane motion and out-of-plane motion.
A discussion of how swarms can be designed to incorporate
these passive safety guarantees in O(n) time is also included
in Section 4-C.

Out-of-Plane Passive Safety

If δa = 0, Equation 9 can be rewritten in matrix notation for
out-of-plane position as[

x
z

]
= a

[
−δex −δey
− δiy

k
δix
k

] [
cos(θ)
sin(θ)

]
(11)

The minimum singular value of this matrix is the minimum
separation in the RN plane. This can be expressed analyti-
cally as

δrmin
RN (k) =

√
2a
∣∣∣δe · δi

k

∣∣∣[
(δe)2 +

(
δi
k

)2
+
∣∣∣δe+ δi

k

∣∣∣ · ∣∣∣δe− δi
k

∣∣∣]1/2 (12)

In circular orbits where k = 1, this expression represents the
true minimum separation between two spacecraft in the RN
plane. However, it is most convenient to set k to its maximum
value, 1 + e, in eccentric orbits. This yields the expression

δrmin,LB
RN =

√
2a
∣∣∣δe · δi

1+e

∣∣∣[
(δe)2 +

(
δi

1+e

)2
+
∣∣∣δe+ δi

1+e

∣∣∣ · ∣∣∣δe− δi
1+e

∣∣∣]1/2
(13)

Equation 13 represents a lower bound on the separation
between two spacecraft, rather than the true minimum. From
here, a sufficient condition for passive safety in the RN plane
can be computed as

| cos(ψ − ϕ)| ≥
ϵ(1 + e)

aδeδi

√
(δe)2 +

( δi

1 + e

)2
−
( ϵ
a

)2
, (14)

where ϵ is a minimum distance requirement. This expression
is a conservative condition for passive safety; if the value of
k at which minimum separation occurs is known, that value
can be substituted in place of 1 + e to yield a more relaxed
condition. It is worth noting that if ω is precessing, then this
condition is tight. In other words, there is a value of ω for
which this lower bound yields the true minimum separation.

In-plane Passive Safety

Passive safety can also be achieved in-plane. Koenig and
Guffanti present derivations to achieve in-plane passive safety
for circular and eccentric orbits, respectively [18] [20]. The
condition of passive safety in the RT plane for the EROEs is

|δλ|


≥ (1 + k)δe+ ϵ

a
if not encircling

≤
{√

(1 + 2k)(δe2 − ϵ
a2 ) if ϵ

a
≤ δe < 1+k

k
ϵ
a

(1 + k)δe− ϵ
a

if δe ≥ 1+k
k

ϵ
a

if encircling

(15)
By inspection of Equation 15, a lower-bound over an orbit can
be achieved by substituting k = 1 + e for the not-encircling
case, and k = 1− e for the encircling case. Doing so yields

|δλ|


≥ (2 + e)δe+ ϵ

a
if not encircling

≤


√

(3− 2e)(δe2 − ϵ
a2 ) if ϵ

a
≤ δe < 2−e

1−e
ϵ
a

(2− e)δe− ϵ
a

if δe ≥ 2−e
1−e

ϵ
a

if encircling

(16)

Passive Safety for N-Spacecraft Swarms

The number of passive safety checks grows with the square of
the number of spacecraft, which can be prohibitively compli-
cated when considering more than three spacecraft. However,
there are certain formation designs that guarantee passive
safety among all members in a swarm, and only require one
passive safety check per spacecraft. These formations are
enabled by the geometric properties of the EROE and are
much easier to design.

Out-of-Plane—The first design utilizes RN-plane separation
to guarantee passive safety. Let N be the number of deputies,
and δαi be the EROE for deputy i where i = 1, ..., N . First,
periodic motion is enforced for all members of the swarm as

δai = 0 for i = 1, ..., N (17)

The strategy for RN-separated swarms it to make the de-
signed phase angles ψdes and ϕdes equal within a certain
tolerance for each deputy as

ψi = ψdes for i = 1, .., N

ϕi = ϕdes for i = 1, .., N
(18)

In order to guarantee separation between all deputies, δe and
δi must be scaled appropriately to ensure minimum distance.
Let δαjk be the EROE of deputy j with respect to k, where
j = 1, ..., N − 1 and k = j + 1, ..., N . This swarm
can be designed with a minimum separation between closest
deputies, where the next closest deputy is defined as the one
with the next greatest EROE magnitudes for δe and δi. This
can be expressed as

δejk = ||δej − δek|| ≥ δemin

δijk = ||δij − δik|| ≥ δimin
(19)
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where δemin and δimin are design parameters. Since the
phase angles for all spacecraft are the same, Equation 19
ensures that δemin and δimin are satisfied for all spacecraft,
not just the next closest deputy. Any choice of δemin and
δimin that satisfies Equation 14 given ψdes and ϕdes is valid.

These four design parameters ψdes, ϕdes, δemin, δimin can
be iterated through until Equation 14 is satisfied. If ψdes and
ϕdes are unconstrained by other design requirements, then
setting the two vectors to be parallel or anti-parallel yields
| cos(ψdes − ϕdes)| = 1, maximizing the left-hand side of
Equation 14. Doing so provides the minimum values of
δemin and δimin as

δemin ≥ ϵ

a

δimin ≥ ϵ

a
(1 + e)

(20)

Using these lower bounds for δemin and δimin maximizes the
swarm formation density. Keeping the magnitudes of δemin
and δimin small also can reduce the maneuver magnitudes in
the case of swarm maintenance (see Section 6). Importantly,
applying Equations 17, 18, and 19 only requires one check
per deputy, keeping the design of large swarms manageable.
An example passively safe swarm design is given in Figure 5,
with fixed swarm spacing (δejk = δemin, δijk = δimin).

Figure 5: Example RN-plane swarm design for three space-
craft. This design has inter-spacecraft EROE separated by
δemin and δimin, while sharing the same phase angles ψdes
and ϕdes.

In-Plane—The second swarm design methodology utilizes
RT-plane minimum separation to ensure passive safety be-
tween all members. Equation 17 still applies to this design
to ensure motion is periodic. Although δi is not relevant
here, a minimum separation threshold in the δe plane must
be enforced as follows:

δejk = ||δej − δek|| ≥ δemin ≥
ϵ

a
(21)

As shown by Koenig and Guffanti [18] [21], the highest
density formation is achieved by placing the relative eccen-
tricity vectors in a grid of equilateral triangles. This can be
expressed mathematically for spacecraft j as

δej = δemin

[
Wj cos(ψdes) +Xj cos(ψdes + π

3
)

Wj sin(ψdes) +Xj sin(ψdes + π
3
)

]
, (22)

where ψdes is a design choice, and Wj and Xj are integers.
Both Wj and Xj cannot be zero simultaneously, and a space-
craft k cannot have Wk =Wj and Xk = Xj simultaneously.
Such a design yields the geometry in Figure 6.

Figure 6: Example δe distribution for RT-plane swarm de-
sign. This design has inter-spacecraft EROE separated by
δemin.

With this relative eccentricity vector design, in-plane passive
safety is guaranteed for the entire swarm by enforcing Equa-
tion 16 as [18]

|δλ| ≤
g(a, e, δemin, ϵ)

2
(23)

where

g(·) =


√

(3− 2e)(δe2min − ϵ
a2 ) if ϵ

a
≤ δemin <

2−e
1−e

ϵ
a

(2− e)δemin − ϵ
a

if δemin ≥ 2−e
1−e

ϵ
a

(24)

This design requires that all deputies are encircling the chief,
which can constrain the number of spacecraft able to be
placed in this formation.

5. DIFFERENTIAL PERTURBATIONS
There is abundant astrodynamics literature that provides
nonlinear differential equations for absolute orbit elements
subject to various perturbations [22] [23] [24]. Such ODE
can be substituted into the time derivative of any set of ROE
to create a nonlinear differential equation for ROE relative
motion, in the form

δα̇ = f(αd,αc,P ), (25)

where P is a set of force model parameters. These ODE can
be linearized around zero separation (α = αd or δα = 0) to
create linear models for relative motion. In general, the most
straightforward way to do this for ROE states is by applying
the chain rule derivative as

δα̇ ≈ A(α)δα, (26)

where

A(α) =
∂δα̇

∂αd

∣∣∣∣∣
αd=α

(
∂δα

∂αd

∣∣∣∣∣
αd=α

)−1

(27)
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If A is time invariant, it can be solved exactly via a matrix
exponential. If not, other methods are available which will
be discussed on a case-by-case basis for the perturbations
addressed in this paper.

The three most relevant perturbations for formation-flying
missions in eccentric orbits are J2, solar radiation pressure,
and third-body effects. J2 is especially relevant when pe-
riapsis resides at low altitudes. The latter two are impor-
tant in high eccentricity orbits (HEO), which are a popular
formation-flying mission destination [5] [6] [8]. Atmospheric
drag is neglected from consideration in this paper. Koenig
provides closed-form solutions for relative motion dynamics
subject to differential drag [25].

J2 Perturbations

The secular variation of mean absolute orbit elements under
the influence of J2 are given as [26]

α̇J2 =



ȧ
ė

i̇

Ω̇
ω̇

Ṁ


J2

= κ


0
0
0

−2 cos(i)
5 cos2(i)− 1

η
(
3 cos2(i)− 1

)

 , (28)

where κ = 3
4
J2R

2µ1/2

a7/2η4 , R is the radius of the central body,
and J2 is the oblateness coefficient of the central body. The
nonlinear effects of J2 perturbations on the EROE can be
easily computed by substituting Equation 28 into the time
derivative of Equation 6. Unfortunately, direct linearization
of these equations does not provide a time-invariant plant
matrix. However, a set of ROE that yields a time-invariant
plant under J2 is provided by Koenig et al. Using this
property, an STM for this ROE definition is derived [27].
Therefore, a first-order map between their ROE state and the
EROE can be applied pre- and post-propagation in order to
derive a J2 STM for the EROE, which is computed as

Φ2 = (M1
2)

−1Φ1M1
2, (29)

where M1
2 is the first order map from ROE definition 2 to ROE

definition 1. In this case, Φ1 represents the STM derived by
Koenig, Φ2 = ΦJ2+kep is the STM for the EROE, and M1

2
can be computed via a chain rule as

M1
2(α) =

∂δα1

∂αd

∣∣∣∣∣
αd=α

(
∂δα2

∂αd

∣∣∣∣∣
αd=α

)−1

, (30)

where δα1 is the first ROE definition, and δα2 is the second
ROE definition. Using this method, the J2 STM (including
Keplerian dynamics) for EROE is

δα(t) = ΦJ2+kep(t)δα(0) (31)

where ΦJ2+kep is provided in Equation 67 in the Appendix.
Inspection of this STM’s form reveals that there is a long
period rotation as well as a nonlinear change in amplitude
on δe. This change can be negative in short time horizons,
but is always positive over long horizons. δλ and δiy only
experience a secular effect. These effects are shown in Figure
7.

Figure 7: Drift of δe and δi under J2 perturbations.

A growth in δe causes a spiraling effect on the relative eccen-
tricity vector, which results in the spacecraft drifting apart.
A decrease could violate a minimum separation requirement.
This is the only additional J2 mode present in eccentric
orbits compared to circular orbits, but it can pose a challenge
for swarm maintenance. Methods to manage this mode are
discussed in Section 6.

Solar Radiation Pressure Perturbations

Solar Radiation Pressure (SRP) is an important perturbation
in high eccentricity orbits, and can cause significant ROE drift
during apoapsis passes. This section details the derivation
methodology, assumptions, and practical applications of the
SRP STM.

Cook and Guffanti present a derivation of the nonlinear ODE
for secular and long-periodic effects of SRP on mean orbit
elements as [28] [21]

α̇srp =



ȧ
ė

i̇

Ω̇
ω̇

Ṁ


srp

= γsrpBsrp
√
a



0
−η(−A sin(ω) + B cos(ω))

e cos(ω)
η

C
e sin(ω)

η
C

sin(i)
η
e
(A cos(ω) + B sin(ω))− e sin(ω)

η
cos(i)
sin(i)

C

−(3e+ η2

e
)(A cos(ω) + B sin(ω))


,

(32)

where γsrp is the solar radiation pressure coefficient:

γsrp =
3

2
√
µ

Ψ⊙

C⊙

(
1 AU
r⊙

)2

, (33)

where Φ⊙ = 1367 W
m2 is the solar flux at 1 AU from the Sun,

C⊙ is the speed of light, and r⊙ is the distance between the
sun and the central body. Bsrp = CrAr

m is the SRP ballistic
coefficient, where Cr is the reflectivity coefficient, Ar is the
cross-sectional area that is illuminated, and m is the mass of

7



the spacecraft. A,B, C are given as

A = cos (Ω− Ω⊙) cos (θ⊙) + cos (i⊙) sin (θ⊙) sin (Ω− Ω⊙)

B = cos(i)[− sin (Ω− Ω⊙) cos (θ⊙)

+ cos (i⊙) sin (θ⊙) cos (Ω− Ω⊙)] + sin(i) sin (i⊙) sin (θ⊙)

C = sin(i)[sin (Ω− Ω⊙) cos (θ⊙)

− cos (i⊙) sin (θ⊙) cos (Ω− Ω⊙)] + cos(i) sin (i⊙) sin (θ⊙),
(34)

where ⊙ represents the fictitious orbit elements of the sun
with respect to the central body inertial reference frame.

This work builds off of the contributions of Guffanti, who
introduced an STM including differential SRP for the ROE
defined in Equation 3. In order to do this, ∆Bsrp, the
difference between the deputy and chief ballistic coefficient,
must be included in the state. This results in a plant matrix
with the form

Asrp =


∂δα̇srp

∂δα

∣∣∣
δα=06×1

∂δα̇srp

∂∆Bsrp

∣∣∣
∆Bsrp=0

01×6 0

 (35)

The upper-right hand term is the dominant term in this plant
matrix, because the difference in ballistic coefficient is much
more influential than the position difference between two
nearby spacecraft with respect to the Sun. Therefore, we can
reasonably set the upper-left hand term in the plant matrix to
zero.

For the ROE in Equation 3, Guffanti derived a plant matrix
for secular, long-periodic, differential SRP with constant
differential ballistic coefficient as [21]

Ac
srp(α) = γsrp

√
a



0

− 2e2+1−η
e2

(Aex + Bey)

−ηB +
e2y
η

cos(i)
sin(i)

C
07×6 ηA− exey

η
cos(i)
sin(i)

C
ex
η
C

ey
η
C

0


(36)

Unlike J2, there has not been a ROE definition discovered
that provides a time-invariant plant matrix under the influence
of differential SRP. This is because five of the absolute
orbit element states are affected by SRP, while J2 has only
three. However, by assuming constant chief orbit elements
and fictitious sun orbit elements, Ac

srp is nilpotent and the
corresponding state transition matrix can be computed as

Φc
srp(t) = I7×7 + Ac

srpt (37)

Using this relation, the differential SRP STM for the EROEs
is

Φsrp = (Mδαc

δα )−1Φc
srpMδαc

δα , (38)

where Mδαc

δα is the first order map from the IC in the
Yamanaka-Ankersen STM to the IC in the Clohessy-
Wiltshire STM, and therefore a map from the EROEs in
Equation 6 to the ROEs in Equation 3 [20]. Mδαc

δα is provided
in the Appendix in Equation 68.

Using this methodology, a state transition matrix including

differential SRP for the EROE is computed as

Φsrp = I7×7 + γsrp
√
a



0
−(η + 3/η)[Aex + Bey ]t

− 1
η
[B(η2 + 3e2y) + 3Aexey ]t

07×6
1
η
[A(η2 + 3e2x) + 3Bexey ]t

Cηext
Cηeyt

0


(39)

Equation 39 demonstrates a more symmetric structure than
36, primarily due to the intrinsic geometric properties of the
EROEs in eccentric orbits. This STM can be included with
the J2 STM in Equation 67 to provide a more accurate closed-
form model. However, care must be taken when using Equa-
tion 39 to propagate for long time periods, especially when
including other perturbations. For example, take the example
of a high eccentricity orbit with a low altitude periapsis pass.
The SRP STM will be accurate at apogee when J2 effects
are small. However, the perigee pass may cause a significant
change in ω. Since Equation 39 assumes fixed chief orbit
elements, this scenario would violate the conditions under
which this STM was derived. In such an orbit, the STM
would likely need to be reinitialized after each periapsis pass
such that chief orbit elements stay updated. Even in the case
of no other perturbations, this STM also assumes constant
Sun position, and therefore will need to be reinitialized
every few days to keep the Sun’s orbit elements accurate.
Despite these limitations, Equation 39 is an effective tool over
moderate time periods where strong perturbations like J2 are
not present.

Third-body Perturbations

Third body perturbations are also of interest in HEO, where
gravitational perturbations of the Sun and Moon can become
significant over an orbit period. Cook provides the derivation
for the nonlinear ODE of mean orbit elements subject to
perturbations from a third body in a circular orbit about a
central body [28]:



ȧ

ė

i̇

Ω̇

ω̇

Ṁ


=
K

n



0

15
2
ηe[AB cos(2ω)− 1

2
(A2 − B2) sin(2ω)]

3
4

C
η
[A(2 + 3e2 + 5e2 cos(2ω)) + 5Be2 sin(2ω)]

3
4

C
η sin(i)

[5Ae2 sin(2ω) + B(2 + 3e2 − 5e2 cos(2ω))]

− 3
4

C cos(i)
η sin(i)

[5Ae2 sin(2ω) + B(2 + 3e2 − 5e2 cos(2ω))]

0


(40)

where K = µ⊙/r
3
⊙, and r⊙ is the distance of the third body

to the central body. Here, ⊙ represents a parameter regarding
the third body, and A, B, and C are defined in Equation 34.
This expression is typically considered sufficiently accurate
when the semi-major axis of the orbit does not exceed one
tenth of the orbit radius of the third body. For HEO orbits,
solar perturbations could use this model, but not lunar pertur-
bations.

From here, Equation 40 can be substituted into the time
derivative of Equation 6 to derive the nonlinear expression for
the EROE subject to third body perturbations. By applying
the chain rule in Equation 27, a plant matrix that includes
third body perturbations can be computed for the mean
EROE. The resultant expression is too long to include in the
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appendices, so only the methodology is described here. Guf-
fanti provides the plant matrix for the ROE in Equation 3 [20].
Assuming time-invariance over the propagation interval, this
plant can be transformed into an STM for the EROE by

Φ3bdy = (Mδαc

δα )−1 exp(Ac
3bdy)M

δαc

δα (41)

Applying Equation 41 yields an analytical expression for
Φ3bdy .

6. SWARM MAINTENANCE
Given the newly derived STMs, the EROE is to be interpreted
as mean elements according to averaging theory [29]. Even if
the mean relative semi-major axis is null (δa = 0), the EROE
can drift under the influence of perturbations. Therefore,
there is a long-term guidance problem where the relative or-
bits must stay within certain thresholds to meet passive safety
requirements. Due to the ability to include perturbations in
the STMs for the EROE, the swarm maintenance problem can
be addressed in a closed-form manner.

Out-of-Plane Maintenance

An out-of-plane swarm maintenance strategy for the J2-
perturbed state transition matrix in Equation 67 is considered
due to its long term accuracy. As observed in Figure 7, there
is a long periodic change in the phase of δe, a nonlinear
change in δe magnitude, and a secular drift in δiy . As seen in
Equation 12, the minimum out-of-plane separation between
two spacecraft is determined by the phase and magnitudes of
δe and δi, and therefore both vectors must be controlled to
guarantee passive safety.

An out-of-plane swarm maintenance scheme has already been
developed and applied for circular orbits [17]. This method
uses a lower and upper bound on ψ and δiy in order to
guarantee a minimum separation. The only difference with
eccentric orbits is that now δe must be controlled as well,
adding one additional constraint to be considered in the
swarm maintenance scheme.

With bounds on phase [ψmin, ψmax], magnitude [δemin, δemax],
and δiy [δiy,min, δiy,max], control windows can be defined
for δe and δi as depicted in Figure 8.

Figure 8: Control Windows for an Out-of-Plane Maintenance
Scheme

Maintenance can be performed to keep δe and δi within
the control windows. If δe reaches a phase or magnitude
boundary, an in-plane maneuver is performed to reset ψ
and δe to their minimum and middle ((δemin + δemax)/2)
values, respectively. The same applies to δiy . Recall from
Equation 12 that a 90◦ angle between δi and δe will cause
the minimum RN separation to go to zero. In order for these
control windows to guarantee a minimum separation, the two
vectors must not form a 90◦ angle at any points within their
respective control windows.

As discussed by Lowe and D’Amico for circular orbits, the
minimum separation of these control windows lies on one
of the boundaries of ψ and δiy [30]. Therefore, only four
checks need to take place in order to compute the minimum
separation. The same applies here, because intuitively the
separation will be minimized when δe lies on the lower
boundary of its control window. Therefore, Algorithm 1 can
be used to compute the minimum separation for this swarm
maintenance scheme.

Algorithm 1 Computation of Minimum RN Separation

function (δemin, ψmin, ψmax, δix, δiy,min, δiy,max)
for ψ ∈ [ψmin, ψmax] do

δe← vector from δemin and ψ
for δiy ∈ [δiy,min, δiy,max] do

δi← vector from δix and δiy
ϕ← compute angle between δe and δi
δrrn ←Min. Separation, Equation 12

end for
end for
if min(ϕ) < 90◦ & max(ϕ) > 90◦ then

δrmin
rn ← 0

else
δrmin

rn ← min(δrrn)
end if

return δrmin
rn

end function

Maneuver Time Prediction

It is of interest to predict when maneuvers occur without
requiring simulation. This can be done semi-analytically
by predicting the next maneuver time using the J2 STM,
resetting the EROE states to their post-maintenance values
at this maneuver time, and repeating. From analysis of the
J2 STM, it is possible to predict when maneuvers occur
semi-analytically. The time until the next maneuver is the
minimum of the times until the different controlled states
(δe, ψ, δλ, δiy) violate their respective control windows.
In addition to the δe and δi bounds discussed in Section 6-
A, δλ will also need to be controlled in most scenarios to
prevent along-track drift. The time derivative of δλ due to J2
perturbations and assuming δa = 0 is

δλ̇ =
κN

η2
[Ceδe0 cos(ψ0 − ω0)− δix sin(2i)], (42)

with the substitutions provided in Equation 67. Using this
time derivative, the time until a specified control window is
violated and a maneuver is performed can be computed. The
same applies to δiy , where its time derivative is given as

δi̇y = −2κ[2e sin(2i)δe0 cos(ψ0 − ω0)− δix sin2(i)] (43)

Once again, this derivative can be used to analytically predict
when the next out-of-plane maneuver will occur. δe and ψ
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do not have simple derivatives to compute when their control
windows are violated. However, bisection can be used to
compute these maneuver times. For δe, setting the lower
bound of the bisection algorithm to zero seconds, and the
upper bound to a sufficiently large number (mission duration,
for example), will guarantee convergence to the maneuver
time. For ψ, a safe upper bound when accounting for angle
wrapping is the time it takes perigee ω to complete one full
rotation. Depending on the size of the control window, this
can also be decreased to achieve faster convergence.

By predicting the times of future maneuvers and resetting
the EROE states to their post-maintenance values, maneuvers
times can be predicted over large time horizons. This process
is detailed at a high level in Algorithm 2.

Algorithm 2 Computation of Maintenance Maneuver Times

function (α0, δα0, tf , control windows)
tcurr = 0
times← Empty Array
while tcurr ≤ tf do

tprop←min(times until control windows violated)
α← Propagate by tprop (Eq. 28)
δα← Propagate by tprop (Eq. 67)
δα← Reset to post-maneuver values
times← Append with tprop
tcurr+ = tprop

end while
return times

end function

This algorithm assumes that the time it takes to complete a
maneuver is much smaller than the time between maneuvers.
If extra fidelity is needed, content from Section 7 can be used
to incorporate maneuver times into tprop, the propagation
time.

Passive J2 Perturbation Removal

As discussed in Section 5-A, the additional modes of motion
under J2 pose a swarm maintenance problem. While the
Section 6-A offers a method to maintain such drift through the
use of control windows, another option is to fundamentally
design the formation as to remove some of these modes. For
J2, there are two formation design constraints that achieve
this. Both are derived by inspection of the J2 STM in
Equation 67.

The first constraint is given as

e(3 cos2(i)− 1)[δex cos(ω) + δey sin(ω)] = δix sin(2i), (44)

which is equivalent to

e(3 cos2(i)− 1)δe cos(ω − ψ) = δix sin(2i) (45)

If Equations 44 and 45 are satisfied, then mean δλ and δe
magnitude remain constant under J2. This removes two of the
four modes and hence is a major simplification of the swarm
maintenance problem in eccentric orbits. In circular orbits,
designers would typically set δix = 0 in order to remove
modes of motion in δiy and δλ. However, this constraint
reveals that a nonzero δix can be utilized to simplify relative
motion in eccentric orbits.

The second constraint is given as

4e[δex cos(ω) + δey sin(ω)] = δix tan(i), (46)

which is equivalent to

4eδe cos(ω − ψ) = δix tan(i) (47)

Satisfying Equations 46 and 47 makes δiy constant under
J2. This condition allows the relative inclination vector to
be fixed, such that the other EROE can be designed around a
fixed point rather than a moving point. The two constraints
provided in this section cannot be met simultaneously.

At small separations, these constraints can be scaled to
large swarms. Let δαk and δαj be the EROE of a deputy
spacecraft k and j with respect to the chief, respectively.
Also let δαjk = δαj − δαk be the EROE of a deputy
spacecraft j with respect to deputy spacecraft k. If both
δαk and δαj are chosen such that Equation 45 is valid, then
˙δλk and ˙δλj both equal zero. Since δλjk = δλj − δλk,

by definition ˙δλjk must also be zero. This logic is only
valid under a first order approximation, and can be applied to
any perturbation removal strategy with any ROE definition.
This is a convenient property of Relative Orbit Elements that
enables rapid scaling of missions from binary formations to
large swarms.

7. IMPULSIVE CONTROL OF THE EROES
This section details the derivation of a control input matrix
for the EROEs in order to model the effects of an impulsive
maneuver, i.e. a maneuver modeled as a discontinuity of
the velocity at constant position. In addition, it provides
a description of a useful closed-loop control policy derived
from reachable set theory to optimize maneuver locations and
magnitudes with respect to ∆v.

Control Input Matrix

A small EROE discontinuity can be computed as a function
of a velocity discontinuity in the first order as

∆δα = Γ(α)∆vRTN , (48)

where ∆vRTN = [∆vR,∆vT ,∆vN ]T is a small change in
velocity expressed in the RTN frame. Γ(α) can be computed
by inverting the Yamanaka-Ankersen STM in Equation 65
and setting the relative position to zero, which yields

Γ(α) =
η

na



2e sin(ν) 2k 0

(k+1)(k−2)
k

−e sin(ν)(1+k)
k

0

k sin(θ)−2ey
k

(k+1) cos(θ)+ex
k

0

− k cos(θ)−2ex
k

(k+1) sin(θ)+ey
k

0

0 0
η2 cos(θ)

k

0 0
η2 sin(θ)

k



, (49)

A significant feature of Γ is the decoupling between in-
plane and out-of-plane control. ∆vN maneuvers will not
affect in-plane motion, and [∆vR,∆vT ]

T maneuvers will not
affect out-of-plane motion. This structure greatly simplifies
relative orbit control, as δi can be controlled separately from
the other EROE. Note that Γ, which is also valid for the
quasi-nonsingular EROE definition in Equation 66, reduces
to Equation 5 at zero eccentricity.
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Closed-Form Impulsive Control using Reachable Set Theory

Reachable set theory can be used to analytically compute
optimal maneuver locations, magnitudes, and directions for
an arbitrary reconfiguration subject to linear time-variant dy-
namics. This methodology has been applied by Chernick and
D’Amico for spacecraft impulsive relative motion control,
and analytical maneuver locations have been discovered [31].
Chernick uses a unique set of relative orbit elements, δα′,
which are defined as

δα′ =


δa′

δλ′

δe′x
δe′y
δi′x
δi′y

 =


(ad − a)/a

Md −M + η[ωd − ω + (Ωd − Ω) cos(i)]
ed − e

ωd − ω + (Ωd − Ω) cos(i)
id − i

(Ωd − Ω) sin(i)

 (50)

An important property of δα′ is that mean anomaly only
appears in the definition of δλ

′
, rather than appearing in δλ,

δex, and δey for the EROE. This makes the derivation of
closed-form solutions for optimal impulsive control signifi-
cantly easier; however, this advantage comes at the expense
of geometry. δα′ does not share a first order equivalence with
the IC of Yamanaka-Ankersen, and therefore lacks a simple
geometric map to relative position and velocity. Nevertheless,
δα′ is an important definition for spacecraft swarms, as
closed-form optimal maneuver locations have been derived
for this ROE.

Since swarm reconfigurations are generally driven by relative
position and velocity requirements, changes in states would
generally be defined in terms of δα rather than δα′. The
use of reachable set theory can be applied directly to δα
and is an active area of research. This paper proposes a
hybrid approach, where a pseudostate ∆δα is mapped into its
corresponding pseudostate ∆δα′ to find maneuver locations,
magnitudes, and directions. The first-order map between
these two pseudostates is

∆δα′ = Mδα′
δα ∆δα

Mδα′
δα =



1
η2 0 0 0 0 0

0 1
η

− ey
η

ex
η

0 0

0 0 cos(ω) sin(ω) 0 0

0 1
η2 − sin(ω)

eη2
cos(ω)

eη2 0 0

0 0 0 0 1
η2 0

0 0 0 0 0 1
η2


(51)

Once ∆δα′ is computed, the closed-form solutions available
in literature can be used to define the maneuver locations,
magnitudes, and directions. Reachable set theory is described
in detail by Chernick [31]. This paper will only discuss the
algorithms needed to create a maneuver definition.

Three-Burn In-Plane Maneuver Scheme

The three-burn impulsive maneuver scheme is used for an
arbitrary in-plane reconfiguration. When only considering
Keplerian motion, δe′ is constant, and the phase of the
pseudostate ∆δe′ will not be affected by the STM. Therefore,
if the maneuver locations are chosen such that the three burns
have the same phase as the commanded phase of the pseu-
dostate ∆δe′, completion of ∆δex will guarantee completion
of ∆δey . Therefore, the number of in-plane pseudostates that
need to be controlled is reduced from four to three, enabling
a three-burn maneuver scheme.

Investigation of the structure of Mδα′

δα reveals that when
mapping from ∆δe to ∆δe′, every in-plane reconfiguration

case will be δe′ dominant. Refer to Chernick’s work on a
discussion of dominance cases; essentially, the psuedostate
∆δe′ will always drive the reconfiguration cost, even in cases
of large ∆δλ. Therefore, the three-burn scheme is an appro-
priate choice, as three pseudostates need to be controlled.

The control input matrix for ∆δα′ is given as

Γ′(α) =
1

na



2
η
e sin(ν) 2

η
k 0

− 2η2

k
0 0

η sin(ν) η
e+cos(ν)(1+k)

k
0

− η
e
cos(ν) η

e
sin(ν) 1+k

k
0

0 0 η
cos(θ)

k

0 0 η
sin(θ)

k


(52)

For simplicity, the scheme described here will only consider
tangential maneuvers. Such maneuvers do not reach the true
minimum ∆v, but are sufficiently close for most applications.
Refer to Chernick’s work on implementation of a maneuver
scheme including radial (∆vR) and tangential (∆vT ) compo-
nents.

First, the maneuver locations νopt,1 and νopt,2 that achieves
the desired pseudostate phase angle of δe must be computed.
The zeros of the function h are such locations, where h is

h(ν) = a∆δe′y(ν)−
∆δe′y,des

∆δe′x,des
a∆δe′x(ν) (53)

where ∆δe′y(ν) and ∆δe′x(ν) are the effects of a tangential
maneuver given in Equation 52. For such maneuvers, ana-
lytical maneuver schemes are available [31]. However, the
bisection method using appropriate bounds on the optimal
maneuver locations provides a more elegant computation
method. The ranges of νopt which guarantee convergence are
provided in Table 1.

Table 1: Boundaries of range guaranteeing convergence to
the values of ν that are aligned with ∆δe.

Condition νopt,1 range νopt,2 range

sign(∆δe′x,des∆δe
′
y,des) = 1 [π, 2π] [0, π]

sign(∆δe′x,des∆δe
′
y,des) = -1 [0, π] [π, 2π]

Once bisection is performed and νopt,1 and νopt,2 are found,
a set of candidate maneuver locations νopt can be constructed
as

νopt = [νopt,1, νopt,2, νopt,1 + 2π, ...] (54)
until reaching the final possible maneuver location allowed
within a specified maximum reconfiguration duration tf .
Using three of these maneuver locations, a linear system can
be set up to solve for ∆vT , the vector of tangential maneuvers
used to compute the reconfiguration. This system is given as∆δa′∆δλ′

∆δe′x

 =

3∑
i=1

Φ′(tf , ti)Γ
′(νi(ti))∆vT,i, (55)

where ti is the time at maneuver location νi, and Φ′ is the
Keplerian STM for δα′, which is

Φ′(tf , ti) =

 0

− 3
2
n(tf − ti) 06×5

04×1

+ I6×6 (56)
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Note that ∆δey is not included in Equation 55; this is because
the maneuver locations are selected such that they are aligned
with the phase of ∆δe. Therefore, completion of ∆δex
will also guarantee that ∆δey is fulfilled. For the case of
∆δex = 0, switching the third row to use nonzero ∆δey
typically yields more numerically stable results.

From here, combinations of maneuver locations can be it-
erated through until the lowest ∆v solution is found, as
described in Algorithm 3.

Algorithm 3 Closed-form maneuver scheme solution.

function RECONFIG(α0, δα0, δαf ,∆tf )
νopt(topt)← Find optimal maneuver locations (Eq. 53)
combos = nchoosek(len(νopt),3)
for combok in combos do

Ak ← Form linear system (Eq. 55)
∆vT = A−1

k [∆δa′,∆δλ′,∆δe′x]
T

if ||∆vT ||1 ≤ vT,best then
combobest = comboi
∆vT,best = ∆vT

end if
end for

return vT,best, combobest
end function

Algorithm 3 also provides the three maneuver vectors for
a reconfiguration. From here, the total ∆v for a maneuver
scheme can be computed by summing over the L2 norms of
these three vectors.

One-Burn Out-of-Plane Maneuver Scheme

Out-of-plane control is a much simpler problem, because
δi does not move under Keplerian dynamics. Therefore, as
long as the maneuver location is aligned with the pseudostate
phase, the maneuver can be completed in one burn.

From inspection of Equation 52, the maneuver location can
be computed as

θ = ω + ν = arctan
(∆δi′y,des
∆δi′x,des

)
(57)

In addition, the total ∆v required to complete an out-of-plane
maneuver is a function of the pseudostate ∆δi′ magnitude as

|∆vN | =
nak

η
∆δi′ (58)

Substituting Equation 57 into k in Equation 58 yields the ∆v
required to complete an out-of-plane maneuver.

8. MARS GRAVITY EXPERIMENT
Validation of the closed-form models and control laws is per-
formed through the development of a conceptual spacecraft
swarm mission denoted the Mars Gravity Experiment. The
mission objective is to collect high-resolution gradiometry
data by measuring the range, range-rate, and accelerations
between multiple spacecraft at low altitudes [32]. This mea-
surement strategy is similar to the GRACE [11] and GRAIL
[33] missions, which recovered the gravity field of the Earth
and Moon to unprecedented accuracy, respectively. However,
a third spacecraft is added for this mission design as to

enable gravity gradient measurements in multiple directions
simultaneously.

This section will detail the design of the absolute orbit of the
chief, and the relative orbits of the two deputies. Problems
of swarm maintenance and ∆v budgeting are addressed in
closed-form using the content of Sections 6 and 7. Simulation
results and analysis are provided in Section 9.

Chief Orbit Design

The design of the chief orbit is subject to several consider-
ations. First, the measurement altitude must be placed as
low as possible to maximize sensitivity to the gravitational
force. However, the use of a circular orbit would shorten the
life of the mission due to atmospheric drag. An eccentric
orbit with measurements being taken during periapsis pass is
instead used, as the orbit need to circularize prior to altitude
decay. Given design heritage for aerobraking missions [34],
an altitude of 170 km is above the range where significant
atmospheric effects are present. However, decreasing mea-
surement altitude from 170 km to 130 km yields over a 70%
increase in gravity gradient resolution, so periapsis will be
placed at 130 km with the understanding that periodic apogee
boosting will have to occur to maintain the orbit.

Since scientific measurements can only be taken during pe-
riapsis passes, J2 perturbations will be leveraged in order to
move the periapsis location ω. This enables comprehensive
scanning of the surface depending on the inclination. Another
operational constraint is power, as it is important to ensure
that apoapsis never resides in the shadow of mars. In order
to guarantee access to the sun, the mission is placed in
a Sun-Synchronous Orbit (SSO) where Ω̇ = 0.524◦/day.
Given the perigee altitude and ascending node precession
rate constraints, there is a unique inclination and periapsis
precession rate for each eccentricity. In order to ensure high
scanning latitudes for sufficient Mars ground coverage, the
inclination must be less than 105◦. Given this, an eccentricity
of 0.4 was selected to provide a reasonable tradeoff between
apoapsis altitude and keeping the periapsis rate sufficiently
high, at about 1.2◦/day.

Using this orbit design, the initial mean chief orbit elements
are given in Table 2.

Table 2: Chief Mean Initial Orbit Elements

Orbit Element Value

Semi-Major Axis (a) 5866 km

Eccentricity (e) 0.4

Inclination (i) 99.5◦

Longitude of Ascending Node (Ω0) 75◦

Argument of Perigee (ω0) 188◦

ω0 is chosen arbitrarily. Ω0 is chosen such that the orbit
angular momentum is closely aligned with the initial sun
vector. Since this is a Sun-Synchronous orbit, this ensures
that as ω drifts, the three spacecraft always have line of sight
to the sun. A visualization of this orbit is provided in Figure
9.
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Figure 9: Chief initial orbit.

Relative Orbit Design

The use of three spacecraft allows for gravity gradient mea-
surements to be taken in multiple directions simultaneously.
In addition, by investigation of Equation 9, perigee precession
can be used to dynamically adjust the baselines for geometric
dilution of precision. Deputy 1 will primarily be responsible
for measurements in the chief’s orbit plane, and Deputy 2 will
be responsible for measurements in the cross-track direction.
In terms of EROE, Deputy 1 will have a large δe and small δi,
while Deputy 2 will have a large δi with a small δe. Passive
safety will be guaranteed by a minimum separation in the RN
plane using methods discussed in Sections 4-A and 4-C.

First, the locations of the two deputies at periapsis are con-
strained such that the inter-spacecraft range is bounded. By
substituting ν = 0 into Equation 9 and setting δa and δλ
to zero, the relative position between deputies and chief at
periapsis is given by

x

a
= −δe cos(ω − ψ)

y

a
=

2 + e

1 + e
δe sin(ω − ψ)

z

a
=

1

1 + e
δi sin(ω − ϕ)

(59)

Equation 59 can be used for deputy placement at periapsis.
Next, Equation 20 can be modified as

δemin ≥ β
ϵ

a

δimin ≥ β
ϵ

a
(1 + e)

(60)

In order for Equation 20 top be valid, ψ and ϕ must be equal
or separated by 180◦. β is a safety factor to ensure deviations
in the phases ψ and ϕ do not cause a minimum separation
violation. The minimum separation ϵ is set to 500 meters for
this design, and β is set to 1.1.

First, the relative orbit of Deputy 1 is designed. This space-
craft is designed to have a maximum of 10 km separation
in the along-track direction for scientific measurements at
periapsis. Since ω rotates, it makes sense to consider the
extreme where sin(ω − ψ) = 1. From Equation 59, this can
be written as

ymax

a
=

2 + e

1 + e
δe, (61)

where ymax is the maximum along-track separation. δe can
be computed from this equation, with the assumption that
δe > δemin. δi is set to δimin from Equation 60 as to ensure
Deputy 1 is passively safe. All that remains is to select the
phases ψ and ϕ. From inspection of the J2 STM in Equation
67, the term Φ6,5 is highly perturbative on δiy in near-polar
orbits. Therefore, ϕ is set to 270◦ such that δix is zero,
minimizing this unwanted J2 effect. This requires that ψ be
90◦. Next, the relative orbit of Deputy 2 is designed. This
spacecraft is designed to have a maximum of 5 km separation
in the cross-track direction for measurements at periapsis.
From Equation 59, this can be written as

zmax

a
=

1

1 + e
δi, (62)

where zmax is the maximum cross-track separation. δi can
be computed from this equation, assuming δi > δimin. δe
is set to δemin as to enforce passive safety in the RN plane.
In addition, δe and δi are set to be anti-parallel to Deputy 1
as to maximize separation between the two deputies. As seen
from Equation 19, RN passive safety for the entire swarm is
guaranteed even if the phases were aligned. From this design
methodology, the nominal EROEs for the deputies are given
in Table 3 and visualized in Figure 10.

Table 3: Deputy EROEs

EROE aδα Deputy 1 Deputy 2

aδa 0 km 0 km

aδλ 0 km 0 km

aδex 0 km 0 km

aδey 5.83 km -0.55 km

aδix 0 km 0 km

aδiy -0.77 km 7.0 km
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Figure 10: Nominal EROE for the two deputies with respect
to the chief.

As discussed, the swarm geometry changes as ω rotates,
which enables measurements to be taken across a number of
directions. One example geometry is provided in Figures 11
and 12 for ω = 180◦.
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Figure 11: In-plane relative position of the two deputies with
respect to the chief for ω = 180◦.
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Figure 12: Out-of-plane relative position of the two deputies
with respect to the chief for ω = 180◦.

As seen in Figure 12, a minimum separation of 500 meters
is guaranteed for ω = 180◦. The true minimum separation
against the analytical lower bound from Equation 12 is pro-
vided in Figure 13 against varying ω.

Figure 13: True minimum separation against the analytical
lower bound.

As can be observed, the distance of Deputy 2 is tight against
the analytical lower bound. This is because the minimum
RN separation is guaranteed entirely by a radial separation
with no normal component, as seen in Figure 12. Since radial
separation is not affected by the value of k (see Equation 9,
the lower bound in this case is tight for all ω. This is not
true for Deputy 1. Finally, it is of interest to investigate the
distribution of deputy locations during periapsis across all
possible values of ω. This can be done using Equation 59
and the periapsis locations are provided in Figure 14.

Figure 14: Deputy periapsis locations projected onto the RT
and RN planes, plotted for all ω.

As expected, the periapsis locations for Deputy 1 mostly
reside in the RT plane, with a small N component for passive
safety. The converse is true for Deputy 2.

Swarm Maintenance—In this section, a swarm maintenance
scheme is designed for Deputy 1 considering J2 perturba-
tions. The control windows used in this design are provided
in Table 4.

Table 4: Deputy 1 Control Windows

EROE Min Max

aδλ -1 km 1 km

aδe 5.83 km 6.42 km

ψ 80◦ 100◦

aδiy -1.54 km -0.77 km

The minimum δe is set to the nominal value from Table 3,
and the magnitude is allowed to exceed this nominal value
by 10%. The phase of δe has a nominal value of 90◦ and is
allowed to fluctuate ±10◦. When either of these windows
is violated, a maneuver is performed to drive δe back to
its middle value ((δemin + δemax)/2), and maximum phase
because ψ̇ < 0. To guarantee a minimum separation in the
RN plane, the smallest magnitude of δiy is set to its nominal
value in Table 3. The maximum value is set to twice that
value as to disallow a large cross-track separation, and δλ is
allowed to fluctuate within ±1 km.
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In order to ensure passive safety across the entire control
window, Algorithm 1 can be used to verify a minimum
separation in the RN plane. For Deputy 1, the computed
value is 541.6 meters. This is above the minimum separation
threshold ϵ of 500 meters due to the applied safety factor
β. The importance of this safety factor is apparent here, as
setting β = 1 would have yielded a minimum separation less
than 500 meters.

Delta-V Budgeting—By combining Algorithm 2 which pre-
dicts maneuver times with Algorithm 3 which can provide ∆v
for a maneuver, long term ∆v budgeting can be performed.
At each computed maneuver time, the in-plane and out-of-
plane maneuver schemes can be used to find the ∆v required
to drive the EROE back inside the control windows. This
process can be extended over large time horizons to get fuel
estimates for different swarm designs at low computational
cost. Using the control windows described in Table 4,
∆v budgeting was performed for Deputy 1. The estimated
accumulated ∆v over a 70 day time period is provided in
Figure 18, which compares these results against high-fidelity
nonlinear simulation (see Section 9-B).

9. SIMULATION AND RESULTS
In order to assess the performance of the closed-form models
and control schemes provided in this paper, high-fidelity nu-
merical simulations are run for the Mars Gravity Experiment
mission design. This section will detail the parameters of
the linear model and the numerical simulation, and provide
results and analysis of the performance of the closed-loop
modeling and control strategies provided in this paper.

Linear Relative Orbit Model

The linear relative orbit simulation utilizes the STMs de-
veloped in Section 5 to propagate the mean EROE directly.
The STMs are initialized with the initial chief and sun orbit
elements, and propagated for different final times t. This
model is defined as

δα(t) = [ΦJ2+kep(t) + Φsrp,1:6(t)]

[
δα0

∆Bsrp

]
(63)

where Φsrp,1:6 is the first six rows of Φsrp, as this model
assumes constant differential SRP ballistic coefficient.

Nonlinear Orbit Simulation

The nonlinear orbit simulation operates by propagating posi-
tion and velocity for each spacecraft under the influence of
Keplerian dynamics and perturbations numerically using the
fundamental orbital differential equations. Such a simulation
allows for computation of osculating orbit elements to com-
pare against the mean elements from the linear model.

The nonlinear simulation setup is provided in Table 5. The
spacecraft properties are provided in Table 6. The initial
conditions are provided in Tables 2 and 3.

Modeling Results

Using the simulation setup described in the previous section,
the linear model can be compared against the nonlinear
simulation. First, Figure 15 compares the osculating EROE of
Deputy 1 against the mean predictions from the linear model
over 10 orbits.

Table 5: High-Fidelity Orbit Simulation Environment

Simulation Parameter Model

Numerical Integrator RK-4

Time Step 6 seconds

Gravity Field J2 Spherical Harmonic

Third Body Sun Point Mass

Solar Radiation Pressure Flat Plate Model
Cylindrical Shadow Model

Planetarty/Sun Ephemerides SPICE (NASA JPL Toolkit)

Table 6: Deputy Simulation Parameters

Parameter Chief Deputy 1 Deputy 2

Cr 1.29 1.90 1.90

Ar 3.34 m2 1.77 m2 1.77 m2

m 339 kg 211 kg 211 kg

Figure 15: Osculating EROE of Deputy 1 for the nonlinear
orbit simulation vs. mean EROE from the linear models.

The EROE from the nonlinear simulation osculate around the
predictions from the mean linear simulation. The drift of δe,
δλ, and δiy are dominated by J2 perturbations, while the drift
of δix is dominated by SRP perturbations. It is worth noting
that the passively safe swarm design was done using mean
EROE, but the osculating EROE fluctuate around these design
parameters. This can lead to a minimum separation violation,
but typically δr is only marginally affected by osculation.
Increasing β slightly in Equation 60 accounts for this. Next,
the position estimate from the linear simulation is computed
by converting the mean EROE into osculating, then applying
the geometric map in Equation 9. The norm error is shown

15



on a logarithmic scale in Figure 16 for 40 orbits.
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Figure 16: Position error of linear models over 40 orbits.

There is oscillation in the errors, reaching their maximum
at apoapsis and minimum at periapsis. The Yamanaka-
Ankersen solution is computed using the initial EROEs in
place of the integration constants. This slightly improves
the accuracy over a Cartesian-based initialization, but it is
still outperformed by the EROE STMs as it does not include
perturbations. The model including SRP provides modest
improvements just including J2, but only for short time
periods as the perigee precession eventually invalidates the
assumption of contain chief orbit elements.

Swarm Maintenance Control Results

In order to test the accuracy of the closed-form swarm
maintenance model, the deputies are equipped with swarm
maintenance control algorithms. When the deputy exits a
control window, a series of maneuvers are scheduled to drive
back to the beginning of the control window according to the
three-burn maneuver scheme (Section 7-C) for in-plane ma-
neuvers, and the one-burn scheme (Section 7-D) for out-of-
plane maneuvers. No navigation uncertainties are considered.

The closed-form model and numerical simulation are run for
400 orbits. The δe and δi trajectories are shown in Figure 17.
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Figure 17: δe and δi trajectory of Deputy 1 over 400 orbits.

As can be observed, maneuvers are performed such that the
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Figure 18: Accumulated ∆v estimate from the closed-form
model compared against nonlinear simulation.

trajectory stays within the control windows. The accumulated
∆v of Deputy 1 over these maneuvers is given in Figure
18. The closed-form model provides the maneuver times,
individual maneuver ∆v magnitudes, and accumulated ∆v
over long time periods with a high level of accuracy. The
error statistics for this scenario are provided in Table 7.

Table 7: Closed-form swarm maintenance model error statis-
tics

Statistic Error Mean Error STD (1σ)
Accumulated ∆v [cm/s] 2.42 (0.5%) -

Maneuver ∆v [cm/s] 0.36 (1.1%) 0.60 (1.8%)

Maneuver Time [hr] 5.5 (0.6%) 2.0 (0.2%)

Running in MATLAB on an M1 Macbook Air with 16 GB of
memory, the closed-form algorithm took 28 milliseconds to
complete. Such is the advantage of using closed-form models
over a full numerical simulation, as different designs can be
rapidly iterated through to find the best choice for a particular
mission.

Swarm Reconfiguration Results

In order to assess the accuracy of the impulsive control laws,
a single maneuver executed in open loop is considered. This
is in contrast to the swarm maitenance controller, which
incorporates secondary closed-loop algorithms to drive the
tracking error to zero. The maneuver definition is provided
in Table 8.

Table 8: Reconfiguration Definition for Deputy 1.

EROE Initial δα0 Final δαf ∆δα

aδa 0 m 0 m 0 m

aδλ 0 m 0 m 0 m

aδex 0 m -812 m -812 m

aδey 5833 m 5777 m -56 m

aδix 0 m 0 m 0 m

aδiy -770 m 0 m 770 m
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Figure 19: Trajectory of Deputy 1 over the reconfiguration in
Table 8.
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Figure 20: Control tracking error of Deputy 1.

δαf represents the EROE for a different swarm design in
which Equation 45 is applied for ω0 = 188◦. This allows δe
to remain constant and ensures ψ̇ = ω̇. From Equation 9, the
in-plane geometry would be constant under J2 in this design,
enabling sampling the gravity gradient in the same direction
over multiple orbits. This maneuver is executed using the
first three maneuver locations for the in-plane maneuver. The
out-of-plane maneuver is completed second.

The trajectory that results from performing this reconfigu-
ration is provided in Figure 19. The maneuver lowers δa
below zero, which causes an increase in δλ and δex. The
second maneuer inverts this drift, and the third maneuver
drives δa back to zero. The fourth maneuver completes the
δi maneuver. The trajectory from this open-loop maneuver
will not perfectly conform to the commanded, and the control
tracking error, computed as the L2 norm of the difference
between true and commanded EROE states, is provided in
Figure 20. Although there are small fluctuations in the error

due to maneuver execution, the dominant error source is per-
turbations, which are not accounted for the in the impulsive
maneuver scheme. This error, at its peak, is about 6.1% of
the L2 norm of the pseudostate command. This percentage is
in line with performance expections for an open loop control
policy, demonstrating that the analytical maneuver schemes
can provide moderately accurate maneuever definitions over
a small number of orbits. Longer reconfigurations will have
higher error.

10. CONCLUSIONS
The use of eccentric orbits for distributed space systems
is increasing due to numerous capabilities that such orbits
provide over low earth orbit. However, the relative motion
dynamics in such orbits are more complex, making problems
such as passive safety and relative orbit control more difficult
to address in closed-form. Furthermore, the state of the art
analytical models for relative motion in eccentric orbits do
not consider the effects of differential perturbations on the
relative orbit.

This paper introduces a new state representation, denoted
the Eccentric Relative Orbit Elements (EROEs), to address
these challenges. EROEs enable an intuitive geometrical
insight into relative orbits. Expressions for minimum inter-
spacecraft separation are provided to guarantee passive safety
in closed-form. STMs for the EROEs are derived which
include perturbations, improving on the accuracy of STMs
based in relative position and velocity coordinates. This
enables the design of swarm maintenance strategies in closed-
form. Finally, existing closed-form control policies based on
reachable set theory are applied to the EROEs. Combining
this control policy with a chosen swarm maintenance scheme
enables semi-analytical ∆v budgeting.

The closed-form models and algorithms proposed in this
paper are applied to the swarm design of a Mars gradiom-
etry mission. Passive safety, swarm maintenance, and ∆v
budgeting are all addressed in closed form through this
design process. Comparing with nonlinear simulation, the
STMs demonstrate improved accuracy over the Yamanaka-
Ankersen STM and the analytical maneuver times and mag-
nitudes closely match the true swarm behavior.

Future work includes the direct application of reachable set
theory to the EROEs, which will likely simplify the analytical
maneuver scheme. Derivation of an STM including differen-
tial drag is a logical next step, as well as a third-body STM
that is applicable for lunar perturbations in high eccentricity
orbits.

APPENDICES
Clohessy-Wiltshire State Transition Matrix

The CW STM is given as
x
y
z
ẋ
ẏ
ż

 = a


1 0 Ψx,3 Ψx,4 0 0

Ψy,1 1 Ψy,3 Ψy,4 0 0
0 0 0 0 Ψz,5 Ψz,6

0 0 Ψẋ,3 Ψẋ,4 0 0
Ψẏ,1 0 Ψẏ,3 Ψẋ,4 0 0
0 0 0 0 Ψż,5 Ψż,6




K1

K2

K3

K4

K5

K6

 (64)

with the following substitutions

Ψx,3 = − cos(u) Ψx,4 = − sin(u)
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Ψy,1 = −
3

2
(u− u0) Ψy,3 = 2 sin(u) Ψy,4 = −2 cos(u)

Ψz,5 = sin(u) Ψz,6 = − cos(u)

Ψẋ,3 = n sin(u) Ψẋ,4 = −n cos(u)

Ψy,1 = −
3

2
n Ψẏ,3 = 2n cos(u) Ψẏ,4 = 2n sin(u)

Ψż,5 = n cos(u) Ψż,6 = n sin(u)

where u = u0 + nt is the mean argument of latitude at
propagation time t, and n =

√
µ/a3 is the mean motion of

the chief.

Yamanaka-Ankersen State Transition Matrix

The YA STM can be expressed as
x
y
z
ẋ
ẏ
ż

 = a


Ψx,1 0 Ψx,3 Ψx,4 0 0
Ψy,1 Ψy,2 Ψy,3 Ψy,4 0 0
0 0 0 0 Ψz,5 Ψz,6

Ψẋ,1 0 Ψẋ,3 Ψẋ,4 0 0
Ψẏ,1 Ψẏ,2 Ψẏ,3 Ψẏ,4 0 0
0 0 0 0 Ψż,5 Ψż,6




C1

C2

C3

C4

C5

C6

 ,
(65)

with the following substitutions

Ψx,1 =
1

k
−

3

2

e

η3
sin(ν)nt Ψx,3 = − cos(θ) Ψx,4 = − sin(θ)

Ψy,1 = −
3

2

k

η3
nt Ψy,2 =

1

k
Ψy,3 = (

1

k
+ 1) sin(θ)

Ψy,4 = −(
1

k
+ 1) cos(θ) Ψz,5 =

1

k
sin(θ) Ψz,6 = −

1

k
cos(θ)

Ψẋ,1 = −
1

k2
k̇ −

3

2

e

η3
[ν̇nt cos(ν) + n sin(ν)] Ψẋ,3 = sin(θ)ν̇

Ψẋ,4 = − cos(θ)ν̇ Ψẏ,1 = −
3

2

k̇

η3
nt−

3

2

k

η3
n Ψẏ,2 = −

k̇

k2

Ψẏ,3 = −
k̇

k2
sin(θ) + (

1

k
+ 1) cos(θ)ν̇

Ψẏ,4 =
k̇

k2
cos(θ) + (

1

k
+ 1) sin(θ)ν̇

Ψż,5 = −
k̇

k2
sin(θ) +

1

k
cos(θ)ν̇ Ψż,6 =

k̇

k2
cos(θ) +

1

k
sin(θ)ν̇

where k = 1 + e cos(ν) and k̇ = −e sin(ν)ν̇. It is worth
noting that all terms that are a function of ν are multiplied by
e, and hence do not create a singularity at e = 0.

Quasi-nonsingular EROE Definition

The EROE definition in terms of quasi-nonsingular orbit
elements is provided as

δα∗ =


δa∗

δλ∗

δe∗x
δe∗y
δi∗x
δi∗y

 =



η2(ad − a)/a

(1 + 1
η2+η

)(eyed,x − exed,y) +
1
η
(ud − u) + η2(Ωd − Ω) cos(i)

ed,x(1 +
e2y

η2+η
)− ex + 1

η
ey(ud − u− ed,yex

η+1
)

ed,y(1 +
e2x

η2+η
)− ey − 1

η
ex(ud − u+

ed,xey
η+1

)

η2(id − i)
η2(Ωd − Ω) sin(i)


(66)

J2-Perturbed State Transition Matrix

The J2-perturbed STM is given as

ΦJ2+kep(t) =
1

η2


η2 0 0 0 0 0
Φ2,1 η2 Φ2,3 Φ2,4 Φ2,5 0
Φ3,1 0 Φ3,3 Φ3,4 Φ3,5 0
Φ4,1 0 Φ4,3 Φ4,4 Φ4,5 0
0 0 0 0 η2 0

Φ6,1 0 Φ6,3 Φ6,4 Φ6,5 η2

 ,

(67)
with the following substitutions

Φ2,1 = −
t(3n− 7κMC)

2η
Φ2,3 = tκe cos(ω0)NC

Φ2,4 = tκe sin(ω0)NC Φ2,5 = −tκ sin(2i)N

Φ3,1 = −
te(3n+ 7κLS) sin(ω0 + ω̇t)

2η

Φ3,3 = tA sin(ω̇t) + (tB + η2) cos(ω̇t)

Φ3,4 = tQ cos(ω̇t) + (tB − η2) sin(ω̇t)

Φ3,5 = tU cos(ω̇t) + tV sin(ω̇t)

Φ4,1 =
te(3n− 7κLC) cos(ω0 + ω̇t)

2η

Φ4,3 = −tA cos(ω̇t) + (tB + η2) sin(ω̇t)

Φ4,4 = tQ sin(ω̇t)− (tB − η2) cos(ω̇t)

Φ4,5 = −tV cos(ω̇t) + tU sin(ω̇t)

Φ6,1 =
7

2
tη2κ sin(2i) Φ6,3 = −4teη2κ sin(2i) cos(ω0)

Φ6,4 = −4teη2κ sin(2i) sin(ω0) Φ6,5 = 2tη2κ sin2(i)

M = η3 − η − 2 C = 3 cos2(i)− 1 N = 4η2 + 3

S = 3 sin2(i)− 2 L = η + 2

A = 3Ce2κ cos2(ω0) B =
3

2
Ce2κ sin(2ω0)

Q = 3Ce2κ sin2(ω0)

U = −3eκ sin(2i) sin(ω0) V = −3eκ sin(2i) cos(ω0)

Map between ROE definitions

The map from the EROEs to the ROEs provided in Equation
3 is used frequently in the derivation of STMs. This map is
given as

Mδαc

δα =


M1,1 0 0 0 0 0
0 M2,2 M2,3 M2,4 0 M2,6

0 M3,2 M3,3 M3,4 0 M3,6

0 M4,2 M4,3 M4,4 0 M4,6

0 0 0 0 M5,5 0
0 0 0 0 0 M6,6

, (68)

with the following substitutions

M1,1 = η2 M2,2 =
1

η
M2,3 = −(η2 −

1

η
)
sin(ω)

e

M2,4 = (η2 −
1

η
)
cos(ω)

e
M2,6 = (η2 −

1

η
) cot(i)

M3,2 =
ey

η
M3,3 = cos2(ω) +

sin2(ω)

η

M3,4 = (1−
1

η
) cos(ω) sin(ω) M3,6 = −

ey cot(i)

η

M4,2 = −
ex

η
M4,3 = (1−

1

η
) cos(ω) sin(ω)

M4,4 = sin2(ω) +
cos2(ω)

η
M4,6 =

ex cot(i)

η
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M5,5 = η2 M6,6 = η2
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