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Operations in proximity of minor bodies demands high levels of autonomy to achieve
cost-effective safe and reliable solutions. Autonomous path planning capability plays a pivotal
role in this, allowing safe operations in very challenging environment. A goal-oriented proximity
path planning methodology is presented here based on repeated trajectory refinement via
sequential convex programming. The objective of the proposed algorithm is to refine an initial
guess trajectory to best observe a set of features on the target surface with specific observation
requirements while respecting physical and operational constraints. Maneuvering epochs are
imposed on a given time horizon to satisfy ground-station requirements and their magnitude
is limited by control capability. Navigation and control uncertainties are taken into account
to obtain a robust solution within a modular and flexible implementation framework. In
particular, navigation performances are assumed to be known at the maneuvering points
enabling compatibility and integrability with on-board navigation filters, while control accuracy
is modelled taking into account magnitude error and firing misalignments, identifying a
conservative approach to guarantee the satisfaction of mission objectives under uncertainty.
The methodology is applied to the case of proximity operations about the 433 Eros asteroid,
due to the large amount of data available on this system thanks to the NASA NEAR mission
flight data. A characterization of the operative environment is presented, highlighting the
main perturbation contributions and including some of them inside the algorithm. Results of a
Monte Carlo analysis performed on the surface feature distribution on a given initial trajectory
show that the solution found always improves observations. Overall, this work presents an
important step forward in enabling goal-oriented autonomous guidance capability for small
bodies proximity operations.

I. Introduction

The recent growing interest in small solar system bodies such as asteroids and comets for scientific inspection,
exploitation of resources and planetary defense reasons is pushing the development of innovative engineering

solutions to better investigate these celestial bodies. Ground-based observations allow preliminary characterizations
of small bodies in terms of bulk properties such as orbit, mass, shape, rotational state and surface composition. The
acquisition of range-Doppler radar data in addition to Optical and Spectroscopic observation revolutionized the way
we look at asteroids allowing for precise shape and rotational state reconstruction [1]. A drastic improvement in the
body characterization can be obtained with in-situ observations with the use of specialized and instrumented probes.
Historically, the easiest way of performing proximity observations is achieved designing a spacecraft trajectory that
intersects the target on its way towards its final destination performing a far flyby. This strategy usually provide, however,
low resolution images with very limited observation windows. Rendezvousing with a small body and orbiting or
hovering in its proximity is a challenging engineering task because it requires precise trajectory control and accurate
navigation in a low gravity highly perturbed dynamical environment. Many robotic missions successfully performed
scientific operations in proximity of asteroids, comets and minor planets. Fundamental milestones have been marked in
the last two decades by missions such as NEAR Shoemaker [2], Dawn [3], OSIRIS-REx[4], Hayabusa [5], Hayabusa 2
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[6], and Rosetta [7], throwing the bases of modern deep-space exploration techniques. Recent resonance to the field
is doubtless provided by DART [8]: the kinetic impactor developed within the framework of the Asteroid Impact
Deflection Assessment (AIDA) program, an ESA-NASA collaboration to test the deflection capability of a kinetic
impactor on potentially hazardous Near Earth Objects (NEO). DART targeted and successfully impacted in September
2022 the secondary asteroid of the Didymos-Dimorphos binary system. By looking at the history of asteroid exploration
a pattern in the operation can be easily identified, a preliminary characterization of the targets is generally performed
from a safe distance, following orbits or hyperbolic arcs accurately designed on ground. Knowledge of the system and its
dynamical environment are initially provided only via ground observations. The initial proximity phase helps refining
this preliminary knowledge paving the way to closer approaches. This tasks have always been performed by large
instrumented probes with heavily margined trajectory control capability and limited autonomy on-board. Nowadays
the Space exploration field is withstanding a transition towards the use of CubeSats, and miniaturized platforms in
general, for the systematic exploration of the Solar System [9]. Their use aims at performing riskier tasks and operate in
multi-agent scenarios while cooping with limited resources but at the same time demands higher levels of autonomy
on-board to achieve cost-effective safe and reliable solutions, particularly for what concern proximity guidance and
navigation. Current approaches for autonomous proximity operations often relies on tracking a reference trajectory
previously designed and optimized on-ground. This kind of approach allows for no replanning capability, struggling in
facing unforeseen events. Moreover, the design is often targeting the best solution in terms of fuel consumption or time
of flight imposing weak requirements in terms of trajectory envelope that do not generally consider the body rotation
and shape. The satisfaction of observation and mapping requirements, usually verified a posteriori, typically relies
on the fact that the target rotation period is significantly shorter than the orbital one, leading to an higher probability
of achieving global mapping. A key improvement in this direction is provided by the multi-satellite mission concept
called Autonomous Nanosatellite Swarming (ANS) and related Simultaneous Navigation and Characterization (SNAC)
algorithms [10]. These endow an ensemble of nanosatellites with the capability to autonomously navigate around and
characterize a small celestial object with minimal ground intervention by estimating shape and gravity concurrently, and
with higher performances than traditional methods [11]. However, this framework still breaks down for different reasons
when more complex objectives are considered such as for example the observation of a specific set of surface features
at a given ground sampling distance (GSD) or under specific illumination conditions. When the perturbing effect of
solar radiation pressure and distributed gravity is considered, the very existence of stable closed orbits is compromised
often leading to high station keeping costs. At the same time, replanning capability and target mapping requires
accurate knowledge on the system dynamics, and precise estimation of the spacecraft state which are strongly affected
by dynamics, navigation and control uncertainties. Finally, the minimization of fuel consumption, i.e. the spacecraft Δ𝑉
budget, may not be of primary importance when performing small bodies proximity operations because of the high
connectivity of the configuration space that allows for relatively fast and cheap reconfiguration. An innovative concept
developed in recent years is proposing a paradigm shift towards autonomous goal-oriented approaches. The idea is that
the probe is provided with the high-level objectives of the mission and the trajectory is computed autonomously on-board
within a continuous replanning framework to best achieve the assigned tasks. In this field it is worth mentioning the
previous work done by Surovik [12], where a sample based abstract reachability analysis performed in the control
domain is proposed as a way of planning impulsive manoeuvres within a receding horizon model predictive control
framework. The same concept is extended by Capolupo [13] to the case of global mapping. A similar methodology is
also exploited in Earth’s orbit for the development of Simultaneous Localization And Mapping (SLAM) techniques in
proximity of artificial objects [14]. The author extended this methodology to the problem of global mapping and features
observation in the proximity of a binary asteroid, investigating different metrics for tuning the algorithm depending on
mission requirements [15]. While being very flexible to different mission scenarios and observation requirements, this
approach presents a few limitations mainly due to the computational cost of computing the reachable set. In fact, despite
exploiting an heuristic refinement technique this approach still requires massive trajectories propagation and potentially
specialized hardware to be performed on-board. Moreover, the optimization is performed arc by arc with limited
considerations on the global optimality of the solution found. An alternative or complementary methodology is proposed
in this work to perform goal-oriented path planning within a Sequential Convex Programming (SCP) framework. The
objective of the proposed algorithm is to refine an initial trajectory, potentially obtained with a simplified dynamical
and observation model of the system, to best observe a set of features on the target surface with specific observation
requirements while respecting physical and operational constraints. SCP is a direct optimization method used to solve
non-convex optimization problem via sequential convexification that approximate the cost function and the constraints
of the original problem in the neighbourhood of the previous step solution [16, 17]. This approach has been used
in concept studies for spacecraft proximity operations [18], fuel-optimal interplanetary transfers [19], passively safe
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satellite swarm control [20], asteroid landing [21] and hopping [22]. To the authors knowledge the application of
this methodology for the optimization of asteroids goal-oriented proximity operations has not been explored yet. The
structure of this paper is reported below. In Sec.II the problem statement is described and the optical guidance problem
is formulated in its non-linear continuous form. Sec.III illustrates the methodology used to map the original problem
into a series of reduced convex optimization problems taking into account navigation and control uncertainties. Sec.IV
illustrates the application of the proposed methodology to the case of Eros proximity operations and shows the results
while, Sec.V summarizes the work contribution and states the prospective for future investigation.

II. Problem statement
The methodology presented in this paper aims at solving the following problem. Given: 1) a set of features on the

asteroid surface; 2) a set of observation requirements for each feature; 3) an initial spacecraft trajectory and control
profile and, 4) a set of operational and safety constraints; find a trajectory that improves the performances of the original
one in terms of observation opportunities under navigation and control uncertainties.

A. From observation requirements to observation regions
Let’s assume that the observation requirements for a given feature on the target surface are expressed in terms of

required ground sampling distance𝐺𝑆𝐷𝑟𝑒𝑞 from nadir observation with an accuracy of 𝜎𝐺𝑆𝐷 one sigma, and maximum
off-nadir pointing allowed 𝜃𝑚𝑎𝑥 . By looking at Figure1a , it is easy to show that the former, being the distance on the
ground covered by a single camera pixel, can be translated into an altitude requirement of the form ℎ ∈ [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥] as

ℎ𝑚𝑖𝑛,𝑚𝑎𝑥 =

(
𝐺𝑆𝐷𝑟𝑒𝑞 ∓ 3𝜎𝐺𝑆𝐷

)
𝑡𝑎𝑛(𝑖𝐹𝑜𝑉)

𝑖𝐹𝑜𝑉≪1∼
(
𝐺𝑆𝐷𝑟𝑒𝑞 ∓ 3𝜎𝐺𝑆𝐷

)
𝑖𝐹𝑜𝑉

(1)

where 𝑖𝐹𝑜𝑉 (in rad) is the instantaneous field of view (iFoV) of the camera, meaning the FoV of the single pixel. This
value is obtained simply by dividing the FoV of the instrument by its resolution. The above constraints define a spherical
sector in space which can be approximated by a convex polyhedron, see Figure1b. This convex set can always be
expressed as a function of the spacecraft position in the asteroid’s fixed frame r𝐵 as the region Ω𝑖 defined by

Ω𝑖 := {r𝐵 ∈ R3 | K𝑖r𝐵 ⪯ 𝜸𝑖} (2)

with K𝑖 ∈ R𝑛𝑦 𝑥3, 𝜸𝑖 ∈ R𝑛𝑦 𝑥1, and 𝑛𝑦 is the number of constraints used to define the set ∗. In the context of this paper
Ω𝑖 will always be referred to as the observation region associated with the 𝑖-th surface feature.

GSD

hmin

hmax

θmax

h

Fig. 1 Geometric relation between scientific requirements (left), and operational requirements (right).

B. Cost function selection
Since the goal is to maximize the observation performances of the trajectory, a good candidate figure to be optimized

must be related with the time spent by the spacecraft within the observation regions. This leads, however, to a value
∗Note that even if the example reported here approximates the spherical sector with a cone section, it is always possible to discretize further the

observation region and express it in the form of Eq.2
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function that is discontinuous in the control domain making the problem harder to track within an optimal control
framework. A natural continuous and differentiable extension of this metric can be found in the distance of the trajectory
from the set Ω𝑖 . The distance 𝑑Ω𝑖

of a point s from a set Ω𝑖 in a given space is defined as

𝑑Ω𝑖
:= | |s − s𝑃,Ω𝑖

| | (3)

where s𝑃,Ω𝑖
is the projection of the point on the set. Since Ω𝑖 is convex, the computation of this quantity requires

finding the solution to a quadratic programming optimization problem [23]. However, an analytical solution can be
found if the set is expressed in the proper space by performing a change of variables. In fact, it is always possible to
define the transformation y𝑖 = K𝑖r𝐵 − 𝜸𝑖 such that Eq.2 becomes

Ω𝑖 = {y𝑖 ∈ 𝑌 ⊂ R𝑛𝑦 | y𝑖 ⪯ 0} (4)

The projection y𝑃,Ω𝑖
of a vector y𝑖 ∈ 𝑌 on Ω𝑖 is therefore given by

(
y𝑃,Ω𝑖

)
𝑗
=

{
0 if (y𝑖) 𝑗 ≥ 0

(y𝑖) 𝑗 otherwise
(5)

where the subscript 𝑗 refers to the vector component. The distance from Ω𝑖 is then given by 𝑑Ω𝑖
= | | (y𝑖 − y𝑃,Ω𝑖

) | | with:

(y𝑖 − y𝑃,Ω𝑖
) 𝑗 =

{
(y𝑖) 𝑗 if (y𝑖) 𝑗 ≥ 0

0 otherwise
(6)

This function is continuous but non differentiable on the boundary of the observation regions, to solve this issue and
induce more regularity, its square is considered and reported in Eq.7.

𝑑2
Ω𝑖

= (y𝑖 − y𝑃,Ω𝑖
)𝑇 (y𝑖 − y𝑃,Ω𝑖

) =
𝑛𝑦∑︁
𝑗=1
𝑚𝑎𝑥2 (0, (y𝑖) 𝑗 ) (7)

Observe that, 𝑑2
Ω𝑖

is a convex function in y𝑖 , and hence in r𝐵, being y𝑖 an affine transformation of the latter one. The
objective of the optimization is then to find the trajectory that has the closest distance from all the 𝑛Ω𝑖

observation
regions specified. This can be achieved through the minimization of the cost function specified by

𝐽 (r𝐵) =
1
𝑅2
𝑠

(𝑛Ω𝑖∑︁
𝑖=1

𝜆∗𝑖 𝑑
2
Ω𝑖

(
r𝐵

(
𝑡∗𝑖
) ))

(8)

where: 𝑅𝑠 is a scale factor, 𝜆∗
𝑖

are weighting coefficients that are used to improve the convergence of the algorithm as
discussed in Sec.III.B and, 𝑡∗

𝑖
is the epoch in which the trajectory is closest to the observation region Ω𝑖 , i.e. the time

in which the spacecraft is likely to perform the scientific observations. Note that this cost function is implicit since
𝑡∗
𝑖
(r𝐵,Ω𝑖), this problem will be also assessed in Sec.III.B. The reason the cost function is evaluated only at the closest

points 𝑡∗
𝑖

needs a deeper explanation. If the problem would be specialized at the case with only one observation region,
i.e. 𝑛Ω𝑖

= 1, it would be possible to evaluate the distance 𝑑Ω𝑖
on all the trajectory. However, when dealing with multiple

features, the distance from a set of disjoint observation regions is not uniquely defined. In these terms, Eq.8 provides a
generalization of the distance in Eq.7 to the more general case of 𝑛Ω𝑖

> 1.

C. Constraints
Four constraints are considered in this work: 1) the differential equations constraint on the dynamics, 2) the

admissible region constraint on the spacecraft position, 3) the control constraint due to actuators limitations and
maneuvering schedule and, 4) an operational constraint on scientific acquisitions. Under the assumption of autonomous
control-affine non-linear dynamics, the differential equations constraint of the problem can be expressed as in

¤x = f (x, 𝑡) + B(x)a(𝑡) (9)

where x is a generic spacecraft state representation in a given reference frame, f is the dynamical drift, B is the control
allocation matrix and a is the control acceleration induced on the spacecraft. Assuming to operate within an impulsive
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maneuvering framework with 𝑛𝑚 control actions taken at times 𝑡𝑙 , Eq.9 can be written as:

¤x = f (x, 𝑡) + B(x)
𝑛𝑚∑︁
𝑙=1

𝛿 (𝑡 − 𝑡𝑙) u𝑙 (10)

with 𝛿 being the Dirac function and u𝑙 the Δ𝑉 executed at the epoch 𝑡𝑙 . The admissible region constraint consists in
imposing that the spacecraft position in asteroid fixed frame r𝐵 ∈ 𝐴 within a given time horizon 𝑡ℎ, with:

𝐴 := {r𝐵 (𝑡) ∈ R3 | g (r𝐵 (x, 𝑡)) ⪯ 0,∀𝑡 ∈ [𝑡0, 𝑡ℎ]} (11)

Where g is a generic non-linear time dependent function of the state. In particular, for the case discussed here only
impact and escape constraints are considered:

| |r𝐵 | | ≤ 𝑅𝐸 (12)

| |r𝐵 | | ≥ 𝑅𝐼 (13)

Where 𝑅𝐸 is a bounding sphere centred on the target that confines the envelope of the trajectory and 𝑅𝐼 is the
Brillouin sphere of the body. The admissible region is therefore defined as:

𝐴 := {r𝐵 (𝑡) ∈ R3 | | |r𝐵 | | ≤ 𝑅𝐸 , | |r𝐵 | | ≥ 𝑅𝐼 ,∀𝑡 ∈ [𝑡0, 𝑡ℎ]} (14)

The control constraint is defined by imposing that the Δ𝑉s remain bounded by the actuators control capacity 𝑢𝑚𝑎𝑥
𝑙

,
i.e. u𝑙 ∈ 𝑈 with:

𝑈 := {u𝑙 ∈ R3 | | |u𝑙 | | ≤ 𝑢𝑚𝑎𝑥
𝑙 } (15)

Finally, the last imposed constraint is an operational requirements on the scientific acquisition stating that no target
observation is possible within a given time interval Δ𝑇𝑚 before and after a maneuvers. This imposes a limitation on the
values that 𝑡∗

𝑖
can assume, more formally:

𝑡∗𝑖 ∉ 𝑇𝑚 :=
𝑛𝑚⋃
𝑙=1

[𝑡𝑙 − Δ𝑇𝑚, 𝑡𝑙 + Δ𝑇𝑚] (16)

D. The optimal control problem
The optimal control problem is then easily obtained combining equations from Eq.8 to Eq.15, as reported in

min
u(𝑡 ) ,x(𝑡 )

1
𝑅2
𝑠

(𝑛Ω𝑖∑︁
𝑖=1

𝜆∗𝑖 𝑑
2
Ω𝑖

(
r𝐵

(
𝑡∗𝑖
) ))

¤x = f (x, 𝑡) + B(x)
𝑛𝑚∑︁
𝑙=1

𝛿 (𝑡 − 𝑡𝑙) u𝑙 ∀𝑡 ∈ [𝑡0, 𝑡ℎ]

x(𝑡0) = x0

r𝐵 (x(𝑡)) ∈ 𝐴 ∀𝑡 ∈ [𝑡0, 𝑡ℎ]
u𝑙 ∈ 𝑈
𝑡∗𝑖 ∉ 𝑇𝑚

(17)

The problem in Eq.17 is a deterministic, non-convex optimal control problem. Moreover, because of the implicit
definition of 𝑡∗

𝑖
discussed in Sec.II.B, the cost function is highly non-linear and the existence of a solution, even in the

unconstrained case, is not guaranteed.

III. Methodology
To solve the problem in Eq.17 within an SCP framework the continuous non-convex optimal control problem is

first translated into a discrete convex optimization problem and then embedded in the sequential convex framework.
This section shows how these steps are performed and how navigation and control uncertainties are embedded in the
algorithm to robustify the solution.
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A. Convexification and discretization
An optimal control problem with linear dynamics, affine equality constraints, inequality constraints formed by

convex functions, and a convex performance index is a convex optimal control problem [16]. The elements to convexify
in the problem formulation are: the non-linear dynamics, the impact constraint and, the cost function. The non-linear
dynamics in Eq.10 is linearized about the given reference trajectory x̂(𝑡) and the given sequence of reference maneuvers
û𝑙 . The linearized dynamics can therefore be expressed as in

𝛿 ¤x =

(
𝜕f
𝜕x

)����
x̂
𝛿x + B(x̂)

𝑛𝑚∑︁
𝑙=1

𝛿 (𝑡 − 𝑡𝑙) 𝛿u𝑙 (18)

with 𝛿x(𝑡) = x(𝑡) − x̂(𝑡) and 𝛿u𝑙 = u𝑙 − û𝑙 . The solution of this linear differential equation is well known in literature
and is given by

𝛿x(𝑡) = 𝚽(𝑡, 𝑡0)𝛿x0 +
∫ 𝑡

𝑡0

𝚽(𝑡, 𝜏)B(x̂(𝜏))
𝑛𝑚∑︁
𝑙=1

𝛿 (𝜏 − 𝑡𝑙) 𝛿u𝑙𝑑𝜏 (19)

Discretizing the solution over a temporal mesh with 𝑛𝑡 discretization points and, applying the property of the Dirac
delta function, leads to a set of equations whose general expression is given by:

𝛿x𝑘+1 = 𝚽(𝑡𝑘+1, 𝑡𝑘)𝛿x𝑘 +𝚽(𝑡𝑘+1, 𝑡𝑘)B(x̂(𝑡𝑘))𝛿u𝑘 (20)

𝛿x𝑘+1 = 𝚽(𝑡𝑘+1, 𝑡𝑘)𝛿x𝑘 +𝚽(𝑡𝑘+1, 𝑡𝑘)B𝛿u𝑘 (21)

where 𝚽(𝑡𝑘+1, 𝑡𝑘) is the State Transition Matrix (STM) of the system that maps the state error at 𝑡𝑘 with the state
error at 𝑡𝑘+1. The STM is computed with respect to the reference trajectory following the variational equations with
𝚽(𝑡0, 𝑡0) = I3𝑥3.

¤𝚽(𝑡, 𝑡0) =
(
𝜕f
𝜕x

)����
x̂
𝚽(𝑡, 𝑡0) (22)

Worth mentioning is also the fact that, in Eq.21 the subscript to the control is changed from 𝑙 to 𝑘 to indicate that the
same discretization is used for state and control. This means that the vector 𝛿u𝑘 = 03𝑥1 when 𝑡𝑘 ≠ 𝑡𝑙 . The linearization
in Eq.21 allows to have a convex dynamical constraint in the form of an affine combination of the optimization variables.
However, in order to be consistent with the real dynamics of the system, an additional constraint needs to be added,
bounding the allowable deviation from the reference trajectory. This is represented by the variable 𝑅 which quantifies
the trust region for SCP iterations

| |𝛿x𝑘 | | ≤ 𝑅 (23)

The second constraint to be convexified is the impact constraint in Eq.13. This condition describes a hollow sphere
and therefore is not a convex set. A relaxation is performed through linearization about the reference trajectory [24, 25],
and the new condition is discretized over the time horizon as shown in Eq.24.

r̂𝑇𝐵𝑘r𝐵𝑘 ≥ 𝑅𝐼 | |r̂𝐵𝑘 | | (24)

Where the hat symbol indicates quantities evaluated on the reference trajectory. The last element to convexify is the cost
function; the reason why the 𝐽 in Eq.8 is not convex is due to the implicit definition of 𝑡∗

𝑖
:

𝑡∗𝑖 = 𝑎𝑟𝑔 min
𝑡∉𝑇𝑚

(
𝑑2
Ω𝑖
(𝑡)

)
(25)

which is a concave function of 𝑑Ω𝑖
and therefore of the spacecraft state. However, under the assumption that in the

neighbourhood of the reference trajectory the epoch of the closest encounter with observation region can be assumed
fixed, 𝑡∗

𝑖
can be evaluated on the reference trajectory:

𝑡∗𝑖 = 𝑎𝑟𝑔 min
𝑡∉𝑇𝑚

(
𝑑2
Ω𝑖
(𝑡)

)
(26)

The reason why this assumption is accurate will be discussed later when presenting the SCP framework. After performing
these convexifications and imposing the discretization on the time horizon, the optimal control problem in Sec.II.D can
be finally reduced in a canonical form approachable by a convex solver as
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min
u𝑘 ,x𝑘

1
𝑅2
𝑠

(𝑛Ω𝑖∑︁
𝑖=1

𝜆∗𝑖 𝑑
2
Ω𝑖

(
r𝐵

(
𝑡∗𝑖
) ))

𝛿x0 = 0
𝛿x𝑘+1 = 𝚽(𝑡𝑘+1, 𝑡𝑘)𝛿x𝑘 +𝚽(𝑡𝑘+1, 𝑡𝑘)B(x̂(𝑡𝑘))𝛿u𝑘 ∀𝑘 = 0 : 𝑛𝑡 − 1
r̂𝑇𝐵𝑘r𝐵𝑘 ≥ 𝑅𝐼 | |r̂𝐵𝑘 | | ∀𝑘 = 0 : 𝑛𝑡
| |r𝐵𝑘 | | ≤ 𝑅𝐸 ∀𝑘 = 0 : 𝑛𝑡
| |u𝑘 | | ≤ 𝑢𝑙𝑚𝑎𝑥 ∀𝑘 = 𝑙

u𝑘 = û𝑘 ∀𝑘 ≠ 𝑙

| |𝛿x𝑘 | | ≤ 𝑅 ∀𝑘 = 0 : 𝑛𝑡

(27)

To be precise, the optimization problem in Eq.27 is convex if r𝐵 (x) is convex. This is naturally achieved if a
Cartesian state representation, position and velocity, is selected where the state can be either expressed in an inertial
frame or directly in the asteroid rotating frame. If this is not the case, an additional step to linearize the kinematic
relation r𝐵 (x) is needed before proceeding. No assumption is performed at this stage on the mesh discretization. Since
the cost function is only evaluated at the 𝑡∗

𝑖
epochs and maneuvers are different from zero only at the 𝑡𝑙 epochs, the

smallest discretization needed to solve the problem is obtained by using only these as collocation points. This leads
to a strong reduction in the size of the convex optimization problem with respect to having a uniform fine mesh. For
example, assuming to use Cartesian coordinates to represent the state, the number of decision variables involved is
given by 𝑁𝑣𝑎𝑟 =

(
𝑛𝑚 + 𝑛Ω𝑖

)
(3 + 6).

B. SCP formulation of the problem
The solution of the convex problem in Eq.27 provides an optimal solution in the neighbourhood of the provided

reference trajectory. Searching for a global minimum requires fitting this problem within a sequential convex
programming framework. In this work a slight variation of the classical SCP methodology [17] is implemented
to improve its convergence properties, provide more reliability under highly non-linear dynamics, and best target
observation regions. Figure2 illustrates the working principle of the implemented SCP approach that is discussed in this
paragraph. The SCP can be seen as an iterative optimization problem on the variables

{
x̂𝑘 , û𝑘 ,𝚽𝑘 , 𝑅, 𝜆

∗
𝑖
, 𝑡∗

𝑖

}
.

(Step 1) The first step consists in initializing the algorithm with a reference solution
{
x̂ 𝑗 , û 𝑗 ,𝚽 𝑗 , 𝑅

}
0
. The letter 𝑗 is

used for subscripts to indicate that this solution is provided on a finer horizon than the one used to solve the convex
optimization, in the current implementation a 5 minutes uniform time step is adopted. This reference is used to compute
the distance square

{
𝑑2
Ω𝑖 , 𝑗

}
0

of the trajectory from each observation region as in Eq.7. These distances are used to

compute the weighting coefficients
{
𝜆∗
𝑖

}
0

for each observation region as:

𝜆∗𝑖 =


𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛 − 𝜆𝑚𝑎𝑥

max
𝑖

(
min
𝑗

(
𝑑2
Ω𝑖

))
− min

𝑖

(
min
𝑗

(
𝑑2
Ω𝑖

)) (
min
𝑗

(
𝑑2
Ω𝑖

)
− min

𝑖

(
min
𝑗

(
𝑑2
Ω𝑖

)))
if min

𝑗

(
𝑑2
Ω𝑖

)
≠ 0

2𝜆𝑚𝑎𝑥 otherwise

(28)

The expression in Eq.28 simply defines a linear variation of the coefficients between 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 as a function of the
minimum distance of the trajectory from the observation region Ω𝑖 . The closest the trajectory is to the region the largest
is the weight increasing the chances of entering it. Moreover a jump to 2𝜆𝑚𝑎𝑥 is implemented when the trajectory enters
the convex set, to increase the penalty of exiting from it. For this work 𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 1. The set of epochs{
𝑡∗
𝑖

}
0

is instead computed through Eq.25 that is now an explicit expression. A value of the initial trust region is also
assumed.
(Step 2) The initial reference is transformed on the reduced horizon discussed in the previous paragraph through a proper
mapping 𝑀

[
{(·)} 𝑗

]
= {(·)}𝑘 . In particular, with the operator 𝑀 , the authors generally referring to any transformation

that maps the problem variables from the reduced horizon domain, indicated by the subscript 𝑗 , to the fine horizon
one, indicated by the subscript 𝑘 . The solution

{
x̂𝑘 , û𝑘 ,𝚽𝑘 , 𝑅, 𝜆

∗
𝑖
, 𝑡∗

𝑖

}
0

is used to solve the convex problem in Eq.27
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{

x̂j , ûj ,Φj , R,λ∗

i , t
∗

i

}

0

Convex problem in Eq.24

Non-linear propagation
on fine time horizon

Compute linearization
error

Update optimization
variables and map M

M0[·]

{

x̂k, ûk,Φk, R,λ∗

i , t
∗

i

}

0

{

uk

}

l

{

xk

}

l

Jl

{

Φ̃j

}

l

{

x̃j

}

l

Ml−1[·]
{

x̃k

}

l

M−1

l−1
[·]

{

uj

}

l

ǫlin

{

x̂k, ûk,Φk, R,λ∗

i , t
∗

i ,Ml[·]
}

l+1

xk,opt,Φk,opt

1

2

3

4

5

Fig. 2 Workflow of the implemented SCP framework.

obtaining 1) the optimal solution
{
u𝑘 , x𝑘

}
, 2) the value of the cost function 𝐽 and, 3) the status of the solver indicating if

a solution was found. In the context of this work the CVX matlab software for disciplined convex programming [26, 27]
is used, since it provides a fast prototyping framework to prove the feasibility of the approach.
(Step 3) The optimal control on the full time horizon is retrieved as

{
u
}
𝑗
= 𝑀−1

[{
u
}
𝑘

]
and this is fed into the non

linear dynamics integrating Eq.10 together with Eq.22 obtaining the solution
{
x̃ 𝑗 , 𝚽̃ 𝑗

}
on the finer mesh.

(Step 4) This steps consists in updating the reference solution and modify the algorithm trust regions. The criterion used
to do this is based on the computation of a linearization error that is defined as the maximum error between the convex
solver solution, x𝑘 , and the non linear solution, x̃ 𝑗 , mapped on the collocation domain, i.e. 𝜖𝑙𝑖𝑛 = max

𝑘

(��𝑀 [
x̃ 𝑗

]
− x𝑘

��) .
Three parameters 𝜌1, 𝜌2, 𝜌3 ∈ R are defined such that 𝜌1 < 𝜌2 < 𝜌3. If 𝜖𝑙𝑖𝑛 > 𝜌3 the solution is discarded and the
algorithm returns to (Step 2) with the same reference trajectory and reduced trust region given by 𝑅𝑛𝑒𝑤 =

𝑅

𝛼
, with

scaling factor 𝛼 > 1 . If 𝜖𝑙𝑖𝑛 ≤ 𝜌3 the non linear solution is accepted, the parameters 𝜆∗
𝑖

and 𝑡∗
𝑖

are computed respectively
through Eq.28 and Eq.25 and the trust region is adjusted according to

𝑅𝑛𝑒𝑤 =


𝑅

𝛼
if 𝜌2 ≤ 𝜖𝑙𝑖𝑛 ≤ 𝜌3

𝑅 if 𝜌1 ≤ 𝜖𝑙𝑖𝑛 < 𝜌2 with 𝛼, 𝛽 > 1
𝛽𝑅 if 𝜖𝑙𝑖𝑛 < 𝜌1

(29)

The values of 𝑡∗
𝑖

computed are used to recompute the new mapping 𝑀 [·] on the reduced domain and the solution
mapped is used to provide a new reference trajectory and control for the next iterations.
(Step 5) The last step consists in performing two tasks: checking the stopping criterion, and storing the best solution
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achieved so far in the process
{
x𝑘,𝑜𝑝𝑡 ,𝚽𝑘,𝑜𝑝𝑡

}
in terms of number of observed surface features. In this paper, the

former one is defined either by a maximum number of iterations 𝑛𝑆𝑇𝑂𝑃 reached, or by achieving the observation of all
the observation regions Ω𝑖 . As will be shown in the results,

{
x𝑘,𝑜𝑝𝑡 ,𝚽𝑘,𝑜𝑝𝑡

}
does not necessarily corresponds to the

last iteration of the SCP algorithm. The reason for this is that the proposed approach is optimizing a continuous cost
function based on the distance of the trajectory from the observation regions while the actual value function, the number
of observed features, is intrinsically discontinuous in the state and control domain. In other words, it is possible that
during some iteration of the SCP algorithm, both the cost function and the number of crossed regions decrease.

C. Robustness to uncertainties
Operations in proximity of small bodies are characterized by large uncertainties that can be grouped in four categories:

navigation, control, dynamic uncertainties and, knowledge of the target topography. The former once are associated with
the accuracy of the on-board navigation strategy, control uncertainties are related with the manufacturing, mounting
and working principle of the spacecraft main engine that induce errors in magnitude and direction of the provided
Δ𝑉 . The effect of maneuvers spreading is neglected in this work. Finally, dynamic uncertainties are associated with
the knowledge of the dynamical environment. Solar radiation pressure and Sun third body acceleration can play an
important role when the body is small like the Didymos asteroid, see Figure3a while non-spherical gravity field effects
becomes predominant with larger asteroids like Eros, see Figure3b.
These effects often requires significant station keeping costs and frequent manoeuvres to follow a precise trajectory in
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Fig. 3 Comparison among perturbation magnitudes in the case of Didymos and Eros system. Environment
characterization for 65803 Didymos asteroid [28] (left). 433 Eros environment, with gravity coefficients retrieved
from [29, 30] (right).

the target body fixed frame. Being able of including and maybe exploiting these perturbations in the path planning
problem would help to reduce a lot the design burden on the spacecraft propulsion system lowering the overall mission
cost and increasing reliability. The way this is implemented within the proposed SCP framework is by properly rescaling
the observation regions Ω𝑖 by a factor 0 < Γ𝑖 < 1 that is a function of the maximum expected position error at time 𝑡∗

𝑖
,

as defined by

Γ𝑖 =
𝑅Ω𝑖

− 3𝜎𝑟 (𝑡∗𝑖 )
𝑅Ω𝑖

(30)

where 𝑅Ω𝑖
is the distance between the center of the observation region and the furthest vertex of the polyhedron, and 𝜎𝑟

is the expected standard deviation of the spacecraft position at the observation epoch 𝑡∗
𝑖
. With these scaling the convex

set defined in Eq.2 becomes:
Ω𝑖 := {r𝐵 ∈ R3 | K𝛼𝑖

𝑖
r𝐵 ⪯ 𝜸𝛼𝑖

𝑖
} (31)

At each iteration of the SCP, the new quantities K𝛼𝑖

𝑖
and 𝜸𝛼𝑖

𝑖
are recomputed during (Step 4). The way 𝜎𝑟 (𝑡∗𝑖 ) is

computed may differ and no particular requirement on the linearity or convexity of the approach is needed since the step
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is performed outside of the convex problem. In this work, a linear covariance propagation is used [31] for simplicity; in
particular, given the spacecraft state covariance P(𝑡𝑙𝑚,𝑖) at the last maneuvering epoch 𝑡𝑙𝑚,𝑖 before 𝑡∗

𝑖
, the covariance at

the closest point is given by
P(𝑡∗𝑖 ) = 𝚽(𝑡∗𝑖 , 𝑡𝑙𝑚,𝑖)P(𝑡𝑙𝑚,𝑖)𝚽𝑇 (𝑡∗𝑖 , 𝑡𝑙𝑚,𝑖) (32)

The covariance matrix at 𝑡𝑙𝑚,𝑖 is computed as

P(𝑡𝑙𝑚,𝑖) =
[
P𝑁
𝑟𝑟 (𝑡𝑙𝑚,𝑖) 03𝑥3

03𝑥3 P𝑁
𝑣𝑣 (𝑡𝑙𝑚,𝑖) + P𝐶

𝑣𝑣 (𝑡𝑙𝑚,𝑖)

]
(33)

with P𝑁
𝑟𝑟 , P𝑁

𝑣𝑣 and P𝐶
𝑣𝑣 respectively the position error covariance due to navigation error, the velocity error covariance

due to navigation error and the velocity error covariance due to control uncertainties. Without lost of generality the
following discussion is performed in Cartesian coordinates but it is always possible to map P(𝑡∗

𝑖
) into a different state

representation. In this work, the subscripts 𝑟𝑟 and 𝑣𝑣 refers to the diagonal block matrices of the tensor while 𝑟𝑣 and 𝑣𝑟
indicates extra diagonal terms.

A simplifying hypothesis is performed on the accuracy of the navigation solution by assuming known diagonal
covariance, i.e. P𝑁

𝑟𝑟

(
𝑡𝑙𝑚,𝑖

)
= 𝜎𝑁

𝑟 I3𝑥3 and P𝑁
𝑣𝑣 (𝑡𝑙𝑚,𝑖) = 𝜎𝑁

𝑣 I3𝑥3 , with constant values of 𝜎𝑁
𝑟 and 𝜎𝑁

𝑣 in all control points.
This condition is in line with the common assumption that the navigation filter converged before performing the next
manoeuver. The control uncertainty is instead modelled taking into account magnitude error and thrust misalignment. In
particular, defining a thruster reference frame as the one shown in Figure4, the single Δ𝑉 manoeuver can be expressed as

u𝑇𝐹
𝑘 = (1 + 𝑚 𝜖 ) | |u𝑘 | |


𝑐𝑜𝑠(𝛼)

𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝜃)
𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝜃)

 (34)

where 𝑚 𝜖 ∼ N (0, 𝜎𝑚) is the magnitude error while 𝛼 ∼ N (0, 𝜎𝑑) and 𝜃 ∼ U (−𝜋, 𝜋) define the misalignment error.
It can be shown [32] that the control covariance in the thruster reference frame is given by:

P𝐶,𝑇𝐹
𝑣𝑣 (𝑢𝑘) =


2𝑁

(
1 + 𝑃2) − 𝑃𝑢2

𝑘
0 0

0 𝑁
(
1 − 𝑃2) 0

0 0 𝑁
(
1 − 𝑃2)

 (35)

with 𝑁 = 1
4
(
1 + 𝜎2

𝑚

)
𝑢2
𝑙𝑚

and 𝑃 = 𝑒−𝜎2
𝑑 . Plugging the three terms in Eq.33 leads to

P(𝑡𝑙𝑚,𝑖) =
[
𝜎𝑁
𝑟 I3𝑥3 03𝑥3

03𝑥3 𝜎𝑁
𝑣 I3𝑥3 + R𝑇𝐹2𝑁P𝐶,𝑇𝐹

𝑣𝑣

(
𝑢𝑙𝑚,𝑖

)
R𝑇
𝑇𝐹2𝑁

]
(36)

where R𝑇𝐹2𝑁 is the rotation matrix from the thruster frame to the reference frame used to describe the dynamics and
𝑢𝑙𝑚,𝑖 is the magnitude of the nominal maneuver at 𝑡𝑙𝑚,𝑖 . The 𝜎𝑟 (𝑡∗𝑖 ) coefficient used in Eq.30 to rescale the observation
region is then computed diagonalizing P(𝑡∗

𝑖
) and taking the square root of its maximum value. A conservative approach

is also proposed in this work to perform fast and lighter computations. A similar approach was proposed in the past

θ

α
u
TF

k

X

Y

Z

Fig. 4 Sketch showing the thruster misalignment error.
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by Surovik [12], but the approach is slightly revised here. The idea is to consider the worst case scenario in which
the largest state uncertainty at 𝑡𝑙𝑚,𝑖 is in the direction that leads to the maximum deviation at 𝑡∗

𝑖
. In other words, the

stretching and rotation of the uncertainty ellipsoid typical of linear covariance propagation is substituted with a more
conservative uniform expansion of the initial uncertainty sphere. This is achieved by performing an eigenstructure
analysis on the STM leading to

𝜎𝑚𝑎𝑥
𝑟 (𝑡∗𝑖 ) =

√︃
𝜆𝑚𝑎𝑥 (𝚽𝑟𝑟 (𝑡∗, 𝑡𝑙𝑚,𝑖)𝚽𝑇

𝑟𝑟 (𝑡∗, 𝑡𝑙𝑚,𝑖))𝜎𝑚𝑎𝑥,2
𝑟𝑙𝑚,𝑖

+ 𝜆𝑚𝑎𝑥 (𝚽𝑟𝑣 (𝑡∗, 𝑡𝑙𝑚,𝑖)𝚽𝑇
𝑟𝑣 (𝑡∗, 𝑡𝑙𝑚,𝑖))𝜎𝑚𝑎𝑥,2

𝑣𝑙𝑚,𝑖
(37)

Where 𝜆𝑚𝑎𝑥 refers to the maximum eigenvalues operator and 𝜎𝑚𝑎𝑥
𝑟𝑙𝑚,𝑖

and 𝜎𝑚𝑎𝑥
𝑣𝑙𝑚,𝑖

are the maximum eigenvalues respectively
of P𝑁

𝑟𝑟 (𝑡𝑙𝑚,𝑖) and P𝑁
𝑣𝑣 (𝑡𝑙𝑚,𝑖) + P𝐶

𝑣𝑣 (𝑡𝑙𝑚,𝑖). The detailed proof of this result is left in the appendix. Apart from speeding
up the computation of the error covariance, this formulation would allow to solve an another important issue. By looking
at Eq.30 it is clear that there is a limit to the maximum position uncertainty allowed at 𝑡∗

𝑖
given by the point in which the

observation region reduces to a point. Moreover, the more Ω𝑖 is compressed the more difficult for the SCP algorithm to
find a trajectory that crosses it. To solve this issue a minimum value of the scale factor 𝛼𝑚𝑖𝑛 can be specified and Eq.37
can be solved for 𝜎𝑚𝑎𝑥

𝑣𝑙𝑚,𝑖
with 𝜎𝑚𝑎𝑥

𝑟𝑙𝑚,𝑖
= 𝜎𝑁

𝑅
and 𝜎𝑚𝑎𝑥

𝑟 (𝑡∗
𝑖
) = 𝑅Ω𝑖

(1 − 𝛼𝑚𝑖𝑛) /3. Furthermore, by neglecting the firing
misalignment errors the velocity uncertainty can be expressed as 𝜎𝑚𝑎𝑥

𝑣𝑙𝑚,𝑖
= 𝜎𝑁

𝑣 + 3𝜎𝑚𝑢𝑙𝑚,𝑖 from which it is possible to
retrieve the maximum magnitude of the manoeuver allowable at 𝑡𝑙𝑚,𝑖 . This information can be used directly during
(Step 4) to update the value of 𝑢𝑚𝑎𝑥

𝑙
in the control constraints of Eq.15. However, an abrupt change on the control

constraint inside the SCP framework with respect to the reference solution can lead to problem infeasibility. To avoid
this, when this phenomenon is encountered the maximum control 𝑢𝑚𝑎𝑥

𝑙
is gradually decreased through the iterations.

IV. Results
The NASA mission NEAR marked the beginning of the asteroid proximity operations era, performing a rendezvous

of the asteroid 433 Eros on the 14th of February 2000 [2]. Eros has an elongated shape with semi-major axis of
approximately 8 km and a rotation period slightly longer than 5 h. Motion in its proximity is interesting from a dynamical
perspective because the body is large and heavy enough to allow for the existence of safe closed orbit solutions while
being at the same time very challenging due the relevance of high order gravitational terms. This is the asteroid for
which the largest amount of data is available in literature and it is also the benchmark target used by the ANS mission
concept and related algorithms [10]. For this reason, the methodology is validated simulating proximity operations
about Eros. The implementation and testing of the methodology is currently done in MATLAB_R2022a †.

A. Set up of the test case
To validate the methodology the following test case is used. The mission goal is set as the observation of 10 features

on the asteroid surface. Each feature is required to be observed at an altitude ℎ ∈ [23, 27]km with maximum off-nadir
pointing 𝜃𝑚𝑎𝑥 = 10deg. The spacecraft state is represented in Cartesian coordinates, i.e. x = [r, v]𝑇 , with r ∈ R3 and
v ∈ R3 respectively the spacecraft position and velocity in the inertial frame centred in the asteroid center of mass. This
representation allows to have a cost function that is convex, and an exact control-affine dynamics. Central gravity, solar
radiation pressure (SRP) and J2 effect are considered in the SCP model. The expression of the Jacobians used to compute
the STM are reported in the Appendix. The relevant parameters describing the system dynamics are reported, in Table1.
The initial trajectory used as reference solution to initialize the algorithm is a circular polar orbit with semi-major axis
equal to 30 km. The setting to the SCP algorithm are shown in Table2. First, the results of a single simulation are
shown focusing on the relevant details, then a Monte Carlo (MC) analysis with 500 different features distribution is
performed, to test the robustness of the algorithm to different initial conditions focusing on more general metrics.

B. Single case
To show the effectiveness of the approach an initial feature distribution is randomly selected from a dataset of

surface features. The polar reference trajectory is shown in Figure 5 both in the inertial and in the asteroid-fixed rotating
frame. Although the inertial plot gives a more intuitive and simple idea of the reference orbit, looking at the body-fixed
rotating frame several considerations can be performed. First of all it can be seen that in this case most of the features
selected are in the polar regions of the asteroid and close to each others which suggests that the initial reference orbit
may a bit a good starting guess for the SCP approach. By looking at the impact region defined in Eq.13 and shown in

†https://www.mathworks.com/products/new_products/release2022a.html
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Parameter Name Symbol Value
Planetary constant 𝜇 4.4602 × 10−4 km3/s2

Cross sectional area 𝐴𝐶𝑆 1 m2

Spacecraft mass 𝑚𝑆𝐶 12 kg
SRP reflection coefficient 𝐶𝑅 1.25

𝐽2 term 𝐽2 0.1173
Table 1 Dynamical parameters used in the simulations.

red in Figure 5 it is clear that a significant portion of the configuration space is taken out of the operational region. This
is due to the fact that the impact constraint is defined with respect to a spherical shell. Substituting 𝑅𝐼 with the local
surface radius would generalize this to impact regions of arbitrary shape. However, for the purpose of this paper, the
spherical approximation is kept for simplicity. The operational constraints in Eq.16 and the maneuvering epochs are
represented respectively with red dots and red circles in Figure.5. The effect of this can be clearly seen in Figure.5b for
the isolated observation region on the souther hemisphere of Eros. Here, the closest distance between the trajectory
and the observation region Ω𝑖 would fall within a forbidden time frame, being too close to a maneuver. Therefore the
associated 𝑡∗

𝑖
epoch ends up being on the next passage of the spacecraft in front of Ω𝑖 , as indicated by the blue star.

Running the SCP on this test case leads to convergence, i.e. mapping of all the features, in 10 iterations as shown in
Figure6a; moreover in this case the convergence is monotonic, confirming that the initial reference trajectory is actually
close to an optimal solution. Figure6b shows instead the computed optimal control for the four maneuvers during the
SCP iterations represented in the Radial-Tangent-Normal frame (LVLH frame). A relevant normal component seems to
be preferred to in-plane maneuvers. This is probably happening because , the mission Δ𝑉 is only imposed as a constraint
in the problem and not as part of the cost function. Normal maneuvers allow to change the orbit inclination, as shown in
Figure7a, placing the spacecraft on an orbit that is not anymore frozen to the J2 perturbation effect. In fact, in this
case, the recession of the ascending node is actually exploited to intersect observation regions. Finally, Figure7b shows
the plot of the final trajectory in the asteroid-fixed frame and the effect of the propagated position uncertainties on the
rescaling of observation regions. As the plot shows, where the uncertainty ellipsoid (in red in the figure) is bigger, the

Symbol Value Ref. Eqs/ Section
𝑡ℎ 47 h 36 m (3 orbits) Eq.14,17,27
𝑛𝑚 4 equally spaced on the horizon Eq.16,18,19
𝑅 0.5 (initial value) Eq.23,27,29
𝜌0 1 Eq.29
𝜌1 3 Eq.29
𝜌2 5 Eq.29
𝛼 3 Eq.29
𝛽 1.5 Eq.29
𝑅𝐼 18 km Eq.13,24,27
𝑅𝐸 180 km Eq.12,27
𝑢𝑚𝑎𝑥
𝑙

1 m/s Eq.15,27, Sec.III.C
Δ𝑇𝑚 1 h Eq.15
𝜎𝑁
𝑟 10 m Sec.III.C
𝜎𝑁
𝑣 1 mm/s Sec.III.C
𝜎𝑚 0.01 Sec.III.C
𝜎𝑑 1 deg Sec.III.C

CVX solver sedumi [33](or mosek [34]) -
Table 2 SCP settings.
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observation region is reduced more, according with the procedure explained in Sec.III.C.

Fig. 5 Reference trajectory used to initialize the SCP shown in the inertial frame (left), and in asteroid’s fixed
frame with the observation regions Ω𝑖 in blue (right). The black line is the trajectory in the two reference frames,
the blue stars indicate the 𝑡∗

𝑖
points, the red circles show the maneuvering points. while the red dots are the

portion of the trajectory in which observations are forbidden.

C. Monte Carlo analysis
The Monte Carlo analysis is performed generating a 5000 dataset of random samples on the surface of the asteroid,

as shown in Figure8. Each instance of the MC select a subset of 10 different features on the surface and generates the
associated observation regions. The initial reference trajectory used to initialize the SCP is still the same polar orbit
discussed in Sec.IV.B. This analysis allows to test the importance of the initial guess given a set of features distribution
on the surface.
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Fig. 6 Cost function decrease during SCP iterations (left) and, control profile for each manoeuvre during the
SCP iterations (right). The Δ𝑉 is expressed in the Radial-Tangent- Normal (RTN) reference frame with the three
components identified respectively by the red, green and blue curves.
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Fig. 7 Solution of the SCP problem shown in the inertial trajectory (top) and, in the asteroid’s fixed frame with
the original observation regions (in blue) and the scaled observation regions in green (bottom). The red ellipsoids
indicates the propagated position covariance of the spacecraft at 𝑡∗

𝑖
. To make the ellipsoids visible in the picture

they have been amplified with a factor of 5.
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Fig. 8 Features distribution for the Monte Carlo analysis. 500 sets of 10 features each are randomly selected on
the asteroid surface, each instance of the MC consists in selecting one of these sets to generate the observation
regions.

In Figure9 the statistical distribution of the obtained control profile is shown. Differently from the case described in
the previous paragraph here tangential maneuvers are dominant. This could be expected in a statistical sense because of
the geometry of the asteroid. In fact, since observation requirements are defined in terms of altitude from the feature,
due to Eros elongated shape the observation regions are generally located at different distances from the asteroid center
of mass. Therefore, in order to reach them or getting closer to them starting from a circular polar orbit, eccentricity
needs to be changed. The most effective way of doing that in a circular orbit is via tangential manoeuvres.
An interesting metric to consider in order to assess guidance performances is the average of the distances 𝑑Ω𝑖

(r𝐵 (𝑡∗𝑖 ))
over all the observation regions, computed as:

𝑑Ω𝑖
=

1
𝑛 𝑓

𝑛 𝑓∑︁
𝑖=1

𝑑Ω𝑖
(r𝐵 (𝑡∗𝑖 )) (38)

this quantity is clearly strongly connected to the cost function defined in Eq.8, but provides a more physical understanding.
Figure10a shows on the x-axis the initial average distance 𝑑0, and on the y-axis the one of the final solution found 𝑑 𝑓 for
all 500 samples of the MC. The straight line indicates the function 𝑑 𝑓 = 𝑑0, therefore a point below this line indicates
that the solution found is closer to set of observation regions in a mean sense. The lower the value of 𝑑 𝑓 the better the
algorithm is performing. As expected the plot shows a linear trend of the performance as the initial distance increases
but with a proportionality coefficient lower than one. This means that while starting from a good guess provides better
results, even the cases in which the reference trajectory is significantly far from the observation set, even up to 7 km on
average, can lead to final solution much closer to the observation regions. Another important metric to observe in the
sequential programming approach is the thrust region R defined in Eq.23. Figure10b shows that the thrust region tends
to increase during the SCP iterations. This suggests that the step between iteration is progressively decreasing leading to
trajectories that are closer to the reference and exhibits therefore lower non-linear errors. In other words this means that
the convex optimization is converging to a local minimum that is inside the convex region defined by the problem’s
constrains and not on its boundary, symptom that the problem is well posed.
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Fig. 9 Control 𝑢𝑘 given at the maneuvering epochs expressed in the RTN reference frame.
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Fig. 10 Monte Carlo SCP performances. In blue the final mean distance of the trajectory from the observation
regions as a function of the initial one (left) and, the evolution of the thrust region during the SCP iterations
(right).

V. Conclusion and future works
This work has been developed to answer a growing need for autonomy in the field of autonomous goal-oriented

proximity operations to small bodies. The paper aims at answering the following question: how can a set of high-level
scientific and operational requirements be translated in an optimal path-planning problem and, what techniques can be
used to solve this problem in a systematic and robust framework? The state of the art in asteroids proximity guidance is
limited to reference trajectory tracking or sample based techniques. These approaches often require high costs in terms
of station keeping or computational resources, being also very sensible to uncertainties. This paper introduces a new
approach to perform goal-oriented autonomous planning in proximity of small bodies. The methodology consists in
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mapping the scientific constraints into a set of convex observation regions in the physical space. An optimal control
problem is then formulated with the aim of minimizing the trajectory distance from these regions while being compliant
with safety and operational constraints. This problem is solved in the framework of sequential convex programming
progressively convexifying the dynamics, some operational constraints and, updating the definition of the cost function
among iterations. A new way of taking into account uncertainties in the process is proposed considering navigation and
control errors. In particular a conservative approach is introduced to estimate the magnitude of the position error during
feature observations and bound it acting on the control given. Results seems very promising indicating that the method is
statistically capable of significantly increasing the quality of a reference trajectory in terms of observation performances,
even under highly non-linear and uncertain environment. The Monte Carlo analysis conducted indicates that a good
guess trajectory is needed to obtain good performances; this can be either designed ad hoc for the application or obtained
by a rougher reachability analysis, maybe with simplified dynamical model and without considering uncertainties. In
this case, an abstract reachability analysis approach could be followed to compute a rough initial trajectory and determine
the maneuvering epochs, substituting the heuristic mesh refinement part of the methodology with the solution of an SCP
problem. Furthermore, new data-driven techniques could be also exploited to warm start the optimization problem.
Only uncertainties in navigation and control are considered in the proposed methodology, however, the approach is easily
extendible to dynamics and target uncertainties. The former ones refer to the limited knowledge of the environment or
the accuracy with which this is considered inside the SCP algorithm. These can be taken into account including higher
order dynamics in the on-board STM, adding a process noise to the covariance propagation, and framing the guidance
algorithm within a Model Predictive Control (MPC) finite-horizon framework. Target uncertainties are instead related
to the knowledge of the shape of the asteroid. The current approach is considering perfect knowledge of the target but
the uncertainties in the features location could be translated into a shrinking factor for the observation regions, in the
same way proposed for navigation and control uncertainties. The accuracy of linear covariance propagation should be
properly assessed considering the highly non-linear dynamical environment, trading off its performance against the
advantage of having closed form analytical solutions such as the one provided by Eq. 37.Fast prototyping in MALTAB
suggests feasibility for on-board implementation, but processor-in-the-loop testing on flight representative hardware is
needed to fully verify the implementation capability. Moreover, state representations different from the Cartesian one,
could help improve the convergence performances of the SCP algorithm.

Appendix

A. Dynamics and Jacobian in Cartesian inertial frame
In the case of Cartesian coordinates in the inertial frame, the uncontrolled dynamics can be expressed as:

¥r = −𝜇 r
𝑟3 + 𝐶𝑆𝑅𝑃

𝝆

𝜌3 + R𝑇
𝑁2𝐵a𝐵 (39)

Where 𝐶𝑆𝑅𝑃 and 𝝆 are given by Eq.40 and Eq.41.

𝐶𝑆𝑅𝑃 =
𝑃0 ∗ 𝐴𝑈2 ∗ 𝐴𝑐𝑠 ∗ 𝐶𝑅

𝑚𝑠𝑐

(40)

𝝆 = r − r𝑠 (𝑡) (41)

and aB is the gravitational acceleration due to distributed gravity naturally expressed in body frame. The solar pressure
at 1 AU is set to 𝑃0 = 4.539807335646850 × 10−9kPa, 𝐴𝑈 = 149597870.691km and r𝑠 (𝑡) is the asteroid sun vector as
a function of time in the inertial frame.
The Jacobian of the dynamical drift f with respect to the spacecraft state is needed to integrate Eq.22 and obtain the
STM. In Cartesian coordinates we have:

𝜕f
𝜕x

=


03𝑥3 I3𝑥3

𝜕 ¤v
𝜕r

03𝑥3

 (42)

With:
𝜕 ¤v
𝜕r

= −𝜇
I3𝑥3𝑟

3 − 3𝑟
(
rr𝑇

)
𝑟6 + 𝐶𝑆𝑅𝑃

I3𝑥3𝜌
3 − 3𝜌

(
𝝆𝝆𝑇

)
𝜌6 + R𝑇

𝑁2𝐵
𝜕a𝐵

𝜕r𝐵
R𝑁2𝐵 (43)
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The derivative of the acceleration with respect to the position in the asteroid fixed frame can be found by differentiating
the gravitational potential obtained with the classical spherical harmonic expansion [35]. This process is performed
neglecting tesseral harmonics contribution and keeping only the J2 term of the zonal expansion. The obtained potential
is then differentiated symbolically in Mathematica leading to the expression shown in Eq.44.

𝜕a𝐵

𝜕r𝐵
= 𝐾𝐽2


𝑟2 (

−𝜂2 + 4𝑟2
𝑧

)
+ 5𝑟2

𝑥

(
𝜂2 − 6𝑟2

𝑧

)
5𝑟𝑥𝑟𝑦

(
𝜂2 − 6𝑟2

𝑧

)
5𝑟𝑥𝑟𝑧

(
3𝜂2 − 4𝑟2

𝑧

)
5𝑟𝑥𝑟𝑦

(
𝜂2 − 6𝑟2

𝑧

)
𝑟2 (

−𝜂2 + 4𝑟2
𝑧

)
+ 5𝑟2

𝑦

(
𝜂2 − 6𝑟2

𝑧

)
5𝑟𝑦𝑟𝑧

(
3𝜂2 − 4𝑟2

𝑧

)
5𝑟𝑥𝑟𝑧

(
3𝜂2 − 4𝑟2

𝑧

)
5𝑟𝑦𝑟𝑧

(
3𝜂2 − 4𝑟2

𝑧

)
−3𝜂4 + 24𝑟2

𝑧𝜂
2 − 8𝑟2

𝑧

 (44)

With:

𝐾𝐽2 =
3𝐽2𝜇𝑟

2
0

2𝑟9 (45)

𝜂 =

√︃
𝑟2
𝑥 + 𝑟2

𝑦 (46)

B. On the formulation of conservative uncertainty propagation
Assuming that the initial covariance is a block diagonal matrix with null cross covariance, e.i. P0𝑟𝑣 = P0𝑣𝑟 = 03𝑥3,

the following statement holds.
P𝑟𝑟 = 𝚽𝑟𝑟P0𝑟𝑟𝚽

𝑇
𝑟𝑟 +𝚽𝑟𝑣P0𝑣𝑣𝚽

𝑇
𝑟𝑣 (47)

A conservative estimate of the position error
(
𝜎𝑚𝑎𝑥
𝑟

)2 is given by the spectral radius of the position covariance P𝑟𝑟

given by:

𝜆𝑚𝑎𝑥 (P𝑟𝑟 ) = 𝜆𝑚𝑎𝑥
(
𝚽𝑟𝑟P0𝑟𝑟𝚽

𝑇
𝑟𝑟 +𝚽𝑟𝑣P0𝑣𝑣𝚽

𝑇
𝑟𝑣

)
≤ 𝜆𝑚𝑎𝑥

(
𝚽𝑟𝑟𝚽

𝑇
𝑟𝑟

(
𝜎𝑚𝑎𝑥

0𝑟𝑟
)2 +𝚽𝑟𝑣𝚽

𝑇
𝑟𝑣

(
𝜎𝑚𝑎𝑥

0𝑣𝑣
)2

)
(48)

Since the tensors 𝚽𝑟𝑟𝚽𝑇
𝑟𝑟 and 𝚽𝑟𝑣𝚽𝑇

𝑟𝑣 are symmetric they can be always diagonalized and therefore the following
inequality holds:

𝜆𝑚𝑎𝑥
(
𝚽𝑟𝑟𝚽

𝑇
𝑟𝑟

(
𝜎𝑚𝑎𝑥

0𝑟𝑟
)2 +𝚽𝑟𝑣𝚽

𝑇
𝑟𝑣

(
𝜎𝑚𝑎𝑥

0𝑣𝑣
)2

)
≤ 𝜆𝑚𝑎𝑥

(
𝚽𝑟𝑟𝚽

𝑇
𝑟𝑟

) (
𝜎𝑚𝑎𝑥

0𝑟𝑟
)2 + 𝜆𝑚𝑎𝑥

(
𝚽𝑟𝑣𝚽

𝑇
𝑟𝑣

) (
𝜎𝑚𝑎𝑥

0𝑣𝑣
)2 (49)

This leads to the expression provided in Eq.37. However, a more conservative estimate can be computed. Considering
that the Cauchy-Green tensor C = 𝚽𝚽𝑇 is positive definite by definition it means that 𝜆𝑚𝑎𝑥

(
𝚽𝑟𝑟𝚽𝑇

𝑟𝑟

)
∈ R+ and

𝜆𝑚𝑎𝑥
(
𝚽𝑟𝑣𝚽𝑇

𝑟𝑣

)
∈ R+. Therefore, the triangular inequality holds:

𝜎𝑚𝑎𝑥
𝑟 ≤

√︃
𝜆𝑚𝑎𝑥

(
𝚽𝑟𝑟𝚽𝑇

𝑟𝑟

)
𝜎𝑚𝑎𝑥

0𝑟𝑟 +
√︃
𝜆𝑚𝑎𝑥

(
𝚽𝑟𝑣𝚽𝑇

𝑟𝑣

)
𝜎𝑚𝑎𝑥

0𝑣𝑣 (50)
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