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VISION-BASED 3D RECONSTRUCTION FOR NAVIGATION AND
CHARACTERIZATION OF UNKNOWN, SPACE-BORNE TARGETS

Kaitlin Dennison* and Simone D’Amico†

Vision-based 3D reconstruction (V3DR) is a low-power, low-cost, and readily
available alternative to stereophotoclinometry and LiDAR for 3D shape recovery
of an arbitrary target. In the context of this work, V3DR comprises stereovision
(SV) and structure from motion (SfM) using sequential or synchronized images
from any number of views. It can be utilized in a variety of space rendezvous
objectives from target pose estimation to full simultaneous navigation and charac-
terization. However, it is rarely employed in practice because implementation can
be complicated due to interdependencies between 3D reconstruction and various
mission design parameters. The complexity is compounded by three gaps in liter-
ature. 1) V3DR’s sensitivity to state estimation, number of observers, target mo-
tion, and clock synchronization. 2) The nuance of V3DR using sequential images
versus synchronized images from multiple agents. 3) How such sensitivities and
the techniques used for V3DR generalize to targets of any size and composition.
To overcome these three gaps and increase V3DR usability, this paper performs
a comprehensive assessment of the sensitivity of V3DR with respect to several
design parameters and two vastly different targets: a large asteroid and a small
spacecraft. The results show that absolute position error has the greatest influence
on SV performance, increasing the number of observers does not necessarily re-
duce SfM error, and multi-agent SV is robust to image desynchronization. The
lessons learned from these results are showcased in a demonstration of characteri-
zation and pose estimation of a non-cooperative spacecraft as well as simultaneous
navigation and characterization of an asteroid. These two case studies show a me-
dian SfM error of 19.07mm and a median SV error of 103.793m for the spacecraft
and asteroid case studies, respectively.

INTRODUCTION

Spacecraft rendezvous with an arbitrary target has applications from celestial body characteri-
zation1–3 to orbital debris removal and spacecraft maintenance.4–6 Knowledge of the target’s rigid
shape is an essential component of target navigation and relative pose estimation. This is typically
accomplished with stereophotoclinometery (SPC) for celestial bodies, sometimes with the aid of
LiDAR.2, 7, 8 If the target is man-made, missions either assume the target’s shape model is known
a priori or use LiDAR to obtain it.6, 9 While these methods are highly accurate, they rely on as-
sumptions or high size, weight, power, and cost (SWaP-C) technology. In contrast, vision-based
3D reconstruction (V3DR), which comprises stereovision (SV) and structure from motion (SfM) in
the context of this work, capitalizes on equipment already ubiquitous across spacecraft to perform
online shape recovery: monocular cameras. Thus, V3DR can be a low SWAP-C alternative to SPC
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and LiDAR for recovering a 3D model of a target, though to date, it has not been widely adopted
due to implementation complexities.

SPC is a computation- and time-intensive method of recovering a high-fidelity shape and albedo
model of a target,7 especially of small celestial bodies. It requires Earth communication and lengthy
observation periods, which inhibits full mission autonomy until the shape model is complete.2, 8

Additionally, such a high-fidelity model is not strictly necessary for performing simultaneous nav-
igation and characterization (SNAC) of celestial bodies.1 In contrast, missions to rendezvous with
a man-made object often rely on an a priori model of the target.6, 9 However, no model would typ-
ically be available for instances of space domain awareness or orbital debris. Furthermore, if there
is a model, it could be inaccurate due to spacecraft damage.6

LiDAR is a general-use sensor that recovers the depth to a surface without any assumed knowl-
edge. While LiDAR has high precision, it comes with high power requirements and demands trade-
offs between moving parts, measurement spread, and observability range.6, 10 V3DR, on the other
hand, can be performed onboard spacecraft, has low power requirements, and has high measurement
spread and observability range at the expense of measurement precision and lighting invariance.11–13

Monocular cameras are light enough to use on nanosatellites and provide numerous uses other than
depth recovery.8, 14 Furthermore, the use of multiple agents in a distributed space system (DSS) im-
proves overall mission flexibility and observability.1, 14 V3DR is a common component of SNAC1

and its subset, simultaneous localization and mapping15, 16 (SLAM).

There are studies on V3DR (and highly-related keypoint matching) performance with respect to
lighting,17 keypoint detection and matching,17, 18 observer angular separation,19 and mathematical
techniques.13, 20 Nevertheless, there are three gaps in the space-rendezvous domain literature that
make V3DR difficult to use in practice. One, sensitivity to observer state knowledge, target motion,
and clock synchronization is especially lacking. Two, sequential imaging using a single camera
has not been compared to simultaneous imaging using multiple synchronized cameras for moving,
space-borne targets. Three, space rendezvous with respect to poorly-known asteroids and man-made
objects are typically siloed in literature, preventing the harmonization of associated techniques.

As a result of these three knowledge gaps, many implementations of V3DR rely on iterative
practices to identify the optimal initial image pairing, requiring many initial images across a variety
of views.12, 21 They also sometimes rely on manually adjusting design parameters (e.g. initial
image pair or feature detection), leading to a mission that is not truly autonomous.2, 8 If the space
rendezvous field had a deeper understanding of how V3DR performance relates to many mission
design parameters, both iteration and manual tuning could be eliminated.

This paper performs an assessment of V3DR performance with respect to various mission design
parameters to fill the three gaps in literature and create a more complete picture of how to optimize
a space rendezvous mission for fast, low SWaP-C structure recovery of an arbitrary target. Rec-
ommendations for mission design are then extrapolated from the simulation results. The remainder
of this paper is organized as follows. First, the V3DR methods are explained. Next, the design
parameter simulations are set up with each parameter model explicitly detailed. Then the design
parameter simulation results are presented and discussed. Finally, two case studies are designed and
evaluated based on the recommended V3DR usage from the simulations.
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VISION-BASED 3D RECONSTRUCTION METHODS

This paper focuses on performing SV* or SfM† on sparse features on the surface of the target
using sequential or synchronized images from any number of views. SV and SfM are the basis of
many other V3DR techniques so their characteristics can be generalized. The specific techniques
for SV and SfM are not the subject of this work, but their performance with respect to various
parameters is.

Both SV and SfM assume 2D points in the images have been associated with one another. Once
matched, the 3D position of each set of 2D points can be computed via SV or SfM, depending on
the level of assumed camera state knowledge. SV assumes the observer pose (position and attitude)
is known with respect to the target’s body-fixed (TBF) frame; SfM does not make that assumption
and recovers the observer pose along with the 3D points. Frequently in V3DR problems, points are
constructed in a single camera’s frame of reference, called the primary observer (PO) frame.11, 15

The choice of PO is explained in the Simulation Setup section.

Feature Detection and Matching

Two point types are used as measurements in this paper: shape model vertices and keypoint
descriptors. Shape model vertices are the subset of 3D model vertices visible to the observer from
the shape model used to generate the images. The vertices are projected into the image frame and
provide an exact ground truth for matched features and recovered 3D points.

However, model vertices do not take perspective changes, lighting, and image noise into ac-
count so keypoints are also evaluated. SIFT22 and ORB23 are used for natural and man-made tar-
gets, respectively, as comparative assessments have shown each to work best for different scene
types.17, 18, 24 Both SIFT and ORB keypoints are first matched by their descriptors.22 Such keypoint
matching is often unreliable, so the epipolar constraint1, 11 is applied as an outlier rejection method
using the true spacecraft pose information. Outliers are also rejected based on the Euclidean dis-
tance between their 3D ray-traced points. While these methods are unrealistic in practice, having
near-perfect matching allows V3DR performance to be characterized independently from point as-
sociation.

Stereovision

SV uses the observer pose information to compute a least-squares estimate of the 3D positions
of 2D points matched between images. The process of computing the 3D position of a single point
in an arbitrary reference frame is described in Alg. 1. Looking at Alg. 1, N is the total number
of views, {l}n is the set of 2D pixel measurements l that correspond to the features detected in
the nth image, l̂ is the normalized form of l. Lines 1-3 iterate over the views to normalize {l}n.
This normalization procedure is the one performed in the normalized 8-point algorithm11 to provide
stability during singular value decomposition.

The for-loop starting on line 4 iterates over each set of pixel measurements {l}i correlated
amongst two or more views and computes an estimate of their corresponding 3D point L̃i. First,
the corresponding l̂ values and observer pose information (3D positions rn ∈ R3 and attitude
Rn : R3 → R3) are gathered into sets in lines 5-7. The choice of reference frame for rn is arbi-
trary but all rn must be in the same frame, Rn is a 3 × 3 rotation from the frame of rn to the nth

*Stereovision using sparse features is sometimes referred to as triangulation.
†Structure from motion is sometimes considered a form of simultaneous localization and mapping (SLAM).
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Algorithm 1 Stereovision

1: for n in {1, ..., N} do
2: {l̂}n ← normalize({l}n)
3: end for
4: for each {l}i across all n do
5: {l̂}i ← the normalized version of {l}i
6: {rn}i ← the set of rn from the views that observed {l}i
7: {Rn}i ← the set of Rn from of the views that observed {l}i
8: L̃i ← DLT({l̂}i, {rn}i, {Rn}i)
9: L̃i ← refine L̃i using {l}i, {rn}i, and {Rn}i

10: end for

camera frame, and L̃i is computed in the same frame as rn. In line 8, an initial estimate Ľi for
L̃i is computed using the direct linear transform (DLT).11 Line 9 refines Ľi to the final estimate by
minimizing its reprojection error using {l}i as described in Dennison et al. (2023).1

Structure from Motion

SfM recovers the 3D points and the 6 degree of freedom poses of the observers up to an unknown
scale. To accomplish this, the poses of all cameras and the 3D positions of all landmarks must
be initialized with respect to the PO frame as described in Alg. 2. Alg. 2 is largely based on
Nistér (2004)25 and Enqvist et al. (2011);20 it is similar to the initial pose estimation via global
relocalization method in ORB-SLAM.21

Algorithm 2 Structure from motion initialization

1: for each {l}i across all n do
2: {l}i,1N ← the set of measurements in {l}i from views 1 and N only.
3: end for
4:

{ 1
Ľ
}
1N

, 1řN , Ř
1→N

← Nistér’s 5-point method using all {l}i,1N
5: for n in {2, ..., (N − 1)} do
6: for each 1

Ľi in
{ 1

Ľ
}
1N

do
7: {l}i,1n ← the set of l values from views 1 and n in the {l}i that corresponds to 1

Ľi

8: end for
9: 1řn, Ř

1→n
← perspective-three-point solver using

{ 1
Ľ
}
1N

and all {l}i,1n
10: end for
11:

{ 1
Ľ
}
← Alg. 1 using

{
1řn

}
,
{
Ř

1→n

}
, and {l}

12:
{ 1

L̃
}
,
{

1r̃n
}
,
{
R̃

1→n

}
← bundle adjustment using

{ 1
Ľ
}
,
{

1řn
}
,
{
Ř

1→n

}
, and {l}

Alg. 2 starts by iterating over the sets of correlated pixel measurements to extract the mea-
surements {l}i,1N that were taken by the outermost views, views 1 and N , only. All {l}i,1N sets
are used in Nistér’s 5-point method25 to compute an initial estimate for each 3D point 1

Ľi in the
PO’s camera frame, the position of the N th observer in the PO’s camera frame 1řN , and the rota-
tion matrix from the PO’s camera frame to the N th observer’s camera frame Ř

1→N
. Note that some

{l}i,1N sets will be empty and Nistér’s 5-point method may find some {l}i,1N to be invalid. In these
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cases, no corresponding 1
Ľi is computed and

{ 1
Ľ
}
1N

consists of just the 1
Ľi values computed by

Nistér’s 5-point method. It is possible for the 5-point method to fail due to random sampling or an
ambiguous similarity transform. These failures are not removed from any simulations in this paper.

The for-loop starting on line 5 estimates the position and attitude of the nth camera in the PO’s
camera frame using a perspective-three-point (P3P) solver.26 To do so, lines 6-8 pull the pixel
measurements that correspond to views 1 and n from the original {l}i set that the {l}i,1N came
from for the respective 1

Ľi. In line 9, the set of estimated 1
Ľi values and the corresponding {l}i,1n

sets to compute the nth camera’s position and attitude.

Line 11 uses the pose estimates and the original pixel measurements in Alg. 1 to compute an
estimate for all correlated sets of measurements observed, not just those observed by both the PO
and the N th observer. Finally, all poses and 3D feature position estimates are refined using bundle
adjustment (BA).27

After this initialization, any subsequent camera poses are computed by first using the P3P solver
to estimate the new pose, using Alg. 1 to compute all 3D feature position estimates, and then apply-
ing BA. Incremental SfM can be performed using BA on a sliding window of views as described in
Mouragnon et al. (2009).28 However, if the original SfM initialization is inaccurate, any additional
camera pose computation will likely fail.20 Thus, only initialization is analyzed in this paper.

SIMULATION SETUP

In order to assess the performance of V3DR with respect to multiple mission design parame-
ters, the simulation is set up such that each parameter can be easily modified and be as agnostic
as possible to the target and camera. The parameters to be evaluated include the number of views,
perspective change between views, distance to the target, observer pose uncertainty, clock synchro-
nization, and target rotation. These are expanded upon throughout this section.

Two space environments are simulated: one with asteroid 433 Eros1 as the target and the other
with the Tango spacecraft from the PRISMA mission29 as the target. Eros and Tango differ drasti-
cally in three areas. One, Eros’ maximum diameter is 22,000 times Tango’s width. This influences
the orbit design and how the perspective changes. Two, Eros acts as the central body of the ob-
servers’ orbits while Tango orbits the Earth along with the observers. Thus, the simulations must be
designed with both absolute and relative orbital elements in mind. Three, the textures on the targets’
surfaces are entirely different: Eros is a rocky body with natural features while Tango is a man-made
object with harsh, geometric features. Generalizing between two radically different targets allows
the lessons learned from the simulations to be used to navigate about and characterize space-borne
targets of almost any size, orbit, and texture.

This section first sets up the relative geometry and dynamics of the simulations and explains
how target generalization is achieved. Then it describes how one might design an actual swarm
formation to match the simulation setup. Next, the image generation and processing pipeline is
explained. Finally, the parameter evaluation simulations are explicitly defined.

Relative Geometry

The parameters that influence the relative geometry are the number of views, perspective change
between views, and the distance to the target. The relative geometry shown in Figure 1 is designed
so each parameter can be independently modified. Observers are distributed in a circle as though
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they are each in a circular, relative orbit about the target. The central axis in Figure 1 is an arbitrary
reference frame F whose x- and z-axes are denoted with XF and ZF , respectively. The y-axis YF
points into the page. This unconventional axis orientation was chosen to match the camera frame
axis, which has its boresight down the positive z-axis. F is aligned with the target’s center but it
does not rotate with the target, similar to a radial-transverse-normal frame.

Figure 1: The relative geometry for 3 observers in the F reference frame. Additional observers are
added clockwise from the last one. Camera axes are denoted with XCn and ZCn

The nth view, whether it is from the nth agent in a swarm or the nth image in a sequence taken
from one agent, has a position Frn ∈ R3 and attitude R

F→Cn

: R3 → R3 represented by

Frn = R2(−(n− 1)βF )[0, 0,−d]T , R
F→Cn

= R2((n− 1)βF ), (1)

where R2 is a passive y-axis rotation, βF is the angular separation between views in F, and d is the
distance to the target. The n = 1 observer is designated as the PO. The PO’s camera frame is simply
a translation of F and is denoted by XC1 and ZC1 . The camera boresight always points towards the
target.

The distance to the target influences how much of field of view (θFOV) the target takes up. With
two different sizes of targets, the same d and camera will result in a vast difference in perspective
of the target. Thus, the percent of the θFOV that the target spans

γ = 100× 2

θFOV
arctan

D

2(f − d)
(2)

is evaluated instead of d in the simulations. Here, D is the maximum diameter of the target (33km
for Eros and 1.48m for Tango) and f is the camera focal length. This equation is derived from the
Gaussian lens equation and the equation for the field of view.30

Spacecraft Pose Uncertainty

There are two position error models used in this paper: absolute position error of each spacecraft
and relative position error between each spacecraft and the PO. The former is representative of
errors from state estimation systems like optical navigation or pseudorange and Doppler from the
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Deep Space Network. The latter represents systems that use radio frequency links or GNSS signals
where the inter-spacecraft range is measured with high accuracy compared to the absolute position
of each spacecraft.29, 31

Absolute position error is modeled as zero-mean Gaussian noise added to the F position of each
observer. The noisy position of the nth observer with absolute error applied is

F r̆n = Frn +N (0, σ2
aI3), (3)

where Frn is the true position of the observer in F and σa is the standard deviation of absolute
position error, and I3 is a 3× 3 identity matrix.

The relative position error is modeled as zero-mean Gaussian noise added to the difference be-
tween the F position of nth observer and the PO. The noisy position of the nth observer with relative
error applied is

F r̆n = F r̆1 +
Frn − Fr1 +N (0, σ2

rI3). (4)

Here, σr is the standard deviation of the relative position error and I3 is a 3×3 identity matrix. Nom-
inal absolute position error is added to the PO when performing simulations with relative position
measurements.

The attitude error is modeled as a 3-2-1 rotation respective to the roll, pitch, and yaw of the
camera boresight. The noisy rotation matrix from F to the nth camera frame Cn is expressed as

R̆
F→Cn

= R1

(
N

(
0, (0.5σq)

2
))

R2

(
N

(
0, (0.5σq)

2
))

R3

(
N

(
0, σ2

q

))
R

F→Cn

, (5)

where R1, R2, and R3 are x-, y-, and z-axis rotations, respectively. The value σq is the standard de-
viation of the attitude error. The roll has twice the error as the yaw and pitch, which is representative
of pointing error for CubeSats.32

Dynamics Model

Sequential imaging as well as the target rotation and clock synchronization parameters necessitate
a dynamics model. A full model with perturbations and rigid body torques would make it difficult
to modulate each parameter and isolate its effects. Instead, the observers simply travel along the
circle in F that they are distributed about. Each observer’s angular velocity in F is

ω =
√

µ/a3, (6)

where µ is the gravitational parameter of the central body and a is the semi-major axis of the orbit.
If Eros is the target, it is the central body so a = d. If Tango is the target, it acts as the chief and the
observers as deputies in a circular, relative orbit about Tango. The time to circumscribe the chief in
a circular, relative orbit is the same as the chief’s orbital period. Thus, a = 8.413 × 106 m, which
is approximately low Earth orbit.

In order to isolate the influence of target rotation rate θ̇, only single-axis target rotation is consid-
ered in this study. The target rotates about YF so the angular separation β between views in the TBF
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frame can be easily modulated depending on θ̇. Therefore, this simulation emulates an equatorial,
circular orbit about the target.

For the single-agent case, βF = ω△t where △t is the time interval between images. Since β is
the parameter to be modulated,△t and βF are computed as

△t =
β

|ω − θ̇|
, βF =

ωβ

|ω − θ̇|
. (7)

If the target is stationary (θ̇ = 0) with respect to F then βF = β. In the multi-agent case, the images
are taken simultaneously so βF = β always. The influence of θ̇ is highly dependent on△t and β. It
is likely that a particular △t is chosen for the entirety of the mission so when θ̇ is being evaluated,
△t is kept constant, allowing β to change. In all other evaluations, β is set to a particular value.

Finally, the last component of dynamics is clock synchronization where the onboard clock drifts
out of sync with GPS time. The drift rate is typically small enough that the clock error between
sequential images from the same agent is inconsequential. However, every agent in a DSS has its
own clock and these may become significantly out of sync with each other after long drift periods.
Therefore, this paper only includes clock synchronization for multi-agent systems.

Clock synchronization error is usually assessed as part of the relative position measurement be-
tween two observers. For instance, pseudorange measurements pn between the PO and the nth
agent can be modeled as

pn = ∥ Frn − Fr1∥2 + cδtn − cδt1, (8)

where c is the speed of light and δtn is the clock error between the PO and the nth agent.31 How-
ever, Eq. (4) already assesses this in a more general form and there is another consequence of
desynchronized clocks that specifically affects SV performance: image desynchronization.

In a DSS, all N images are assumed to be acquired at the same predetermined time tacq. However,
if the clocks are not synchronized, each image is taken at a time tn = tacq + δtn (by definition,
δt1 = 0). The target and all of the observers will have a different pose at each tn than at tacq,
resulting in an erroneous SV computation because SV uses the observer and target poses at tacq.
Thus, in this sensitivity analysis, while the observer poses used for SV computation are defined
using Eq. (1), the true scene used to generate each image is defined as follows. The desynchronized
observer poses are

F
rdn = R2(−ωδtn) Frn, Rd

F→Cn

= R2(−ωδtn) R
F→Cn

(9)

and the desynchronized target pose in the nth image is

Rd,n

TBF→F
= R2(−θ̇δtn) R

TBF→F
. (10)

The rotation matrix
TBF→F
R is the rotation from TBF to F. In a real mission, the SV error induced

by image desynchronization will likely be compounded with the SV error induced by relative po-
sition error from clock drift and offset. The two are kept separate in this study so their individual
contributions to SV error can be characterized.
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Swarm Formation Examples

There are infinitely many ways to design a swarm formation and the simulations in this paper
intend to provide guidelines for how one might modify an orbit design to improve V3DR perfor-
mance. The relative geometry shown in Figure 1 is a basic swarm formation design intended for
simulation purposes but can actually be achieved in practice.

While full formation design is outside the scope of this paper, Table 1 presents example relative
orbital elements (ROEs) for orbiting about each target. If Eros is the target, the PO is the chief
and each subsequent observer is separated in the along-track direction. An inclined version of this
formation design was used in Dennison et al. (2023).1 If Tango is the target, Tango is the chief and
the observers are separated so their δe and δi vectors are anti-parallel to achieve passive safety (as
shown in Figures 2(a) and 2(b)). Note that the Tango-relative orbit may not result in the exact Figure
1 formation shown and will likely lead to a larger inter-observer angular separation than βF .33

Table 1: The relative orbital elements of observer n with respect to the primary observer (n = 1)
when Eros is the target or with respect to Tango if Tango is the target. Here, β̃(n) = (n− 1)βF .

Target aδa aδλ aδex aδey aδix aδiy

Eros 0 d sin β̃(n) 0 0 0 0
Tango 0 0 d sin β̃(n) d cos β̃(n) −d sin β̃(n) −d cos β̃(n)

(a) Relative δe vectors. (b) Relative δi vectors.

Figure 2: The relative δe and δi vectors for the swarm formation with respect to Tango. Each δen
and δin are antiparallel to achieve passive safety with a variable number of agents.

Images

The Eros and Tango image-generation tools are those used in Dennison et al. (2023)1 and Park
et al. (2022).4 Representative, synthetically generated images are shown in Figure 3. Each image
is corrupted with a Gaussian white noise with a standard deviation of 0.0022, Gaussian blur of 0.8,
and salt and pepper noise with a standard deviation of 0.001.34, 35 A median filter and a Wiener
filter are applied to each image to aid keypoint detection and matching. The camera is modeled as a
Grasshopper336 with f = 17.5mm, which is the same camera used in Park et al. (2022).4
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(a) Asteroid 433 Eros (b) Tango

Figure 3: Examples of synthetically generated images with added noise.

Design Parameters

The tunable parameters explained throughout this section are compiled in the two following ta-
bles. Table 2 lists the parameters that define the relative geometry shown in Figure 1 as well as the
dynamics model. The △t for θ̇ evaluations is computed using Eq. (7) and the default parameters.
Table 3 lists the parameters that determine system uncertainties. The imaging clock error δtn is
multiplied by the speed of light c for readability. The nominal values in Table 3 are examples of
realistic values for each parameter.3, 29, 32

Table 2: Observer-observer and observer-target relative geometry parameter ranges evaluated as
well as default parameter settings. Eros’s rotation rate3 is Ẇ = 0.01897◦/s.

Angular
Separation

Number
of Views

Percent
of FOV

Eros
Rotation

Rate

Tango
Rotation

Rate

Symbol β N γ θ̇ θ̇
Units ◦ - % ◦/s ◦/s

Minimum 0.1 2 10 -3Ẇ -3
Maximum 90 7 150 3Ẇ 3
Default 20 3 75 Ẇ 1

Randomized trials are used to assess V3DR performance with respect to each of the parameters
in Tables 2 and 3. A simulation for each of the two different targets is run for each parameter. The
parameter being evaluated is incremented NI times along its valid range. The parameters not being
evaluated are set to their default values if they are in Table 2 or to zero if they are in Table 3.

There are NT trials performed for each increment with randomized target attitude and lighting
conditions. The target’s initial attitude in F is a random quaternion vector. The lighting direction is
a random unit vector pointing from the target center out into the hemisphere centered at the mean
of all Frn vectors.

V3DR performance for a particular parameter iteration is measured as the median proportional
depth recovery error δρ̂ across all 3D points recovered across all trials of that parameter increment.
The proportional depth recovery error of a single point is
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Table 3: Observer state uncertainty parameters evaluated. (E) and (T) denote Eros and Tango as the
target, respectively. Nominal values are representative of past space missions.

Absolute
Position
Error

Relative
Position
Error

Attitude
Error

Imaging
Clock
Error

Symbol σa σr σq cδtn
Units m m arcsec m

Maximum (E) 500 100 150 c(1s)
Maximum (T) 5 2 150 c(1s)
Nominal (E) 100 20 60 20
Nominal (T) 1 0.25 60 1

δρi =
∥ C1Li − C1Li∗∥2

D
. (11)

Here, C1Li is the reconstructed point in the PO frame and C1Li∗ is the true (or ray-traced) point.
Using the unitless δρ̂ abstracts the error from the scale of the target. The median absolute depth
recovery error δP̂ , which has the same units as D, can be obtained from δρ̂ via δP̂ = Dδρ̂.

PARAMETER EVALUATION RESULTS & DISCUSSION

Each of the following subsections discusses the results of each design parameter simulation. For
the relative geometry simulations, Figures 4-7 each contain a 2×2 grid of subplots with two y-axes:
δρ̂ and average number of reconstructed points per trial N̂p across all simulations in the plot (shown
as the grey shaded region in the background). The rows are the SV-only (top) and SfM (bottom)
simulation results. The columns are the simulation results using model vertices (left) and keypoint
descriptors (right) as features. Similarly, Figures 8-10 contain the SV results for the observer state
uncertainty simulations. They contain two subplots: the simulation results using model vertices
(left) and keypoint descriptors (right) as features. All δρ̂ y-axes are logarithmic, and the δρ̂ data
in Figures 4 and 6-10 are smoothed using a moving average. For context, a δρ̂ = 10−3 results in
δP̂Eros = 33m and δP̂Tango = 1.48mm for Eros and Tango, respectively.

Angular Separation

Looking at Figure 4, as β increases, δρ̂ initially drops steeply and then plateaus. For all cases ex-
cept SV using model vertices, δρ̂ slowly rises after the plateau. The average number of reconstructed
points decreases as β increases because matching diminishes as perspective changes. V3DR error
and match counts decreasing as β increases is a relationship already known in literature.17, 19, 20

The increase in δρ̂ as β continues to increase is more interesting as it implies that increasing β
as much as possible can hinder performance. This relationship is most apparent for the keypoint
descriptor simulations because of keypoints’ weakness to large perspective changes. Furthermore,
in Figure 4, SfM fails to compute a solution when β gets too large because it does not have enough
points. Therefore, there is an optimal range of values for β that will depend on the prescribed
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Figure 4: The effects of angular separation β on V3DR performance.

relative geometry, feature descriptor, and V3DR method. E.g. for N = 3, a range of β ∈ [10◦, 60◦]
is acceptable for SV using SIFT but β ∈ [15◦, 40◦] is more appropriate for SfM using ORB.

Number of Views

In the left column of Figure 5, increasing N decreases δρ̂. The change is highly correlated with β
because as N increases, angular separation between the two outermost views increases. Unlike with
β, increasing N also increases N̂p, likely because there are more intermediate images to provide
matches between features.

When the model vertices are swapped for keypoint descriptors, the relationship between N and
δρ̂ changes. While SV still loosely has a negative correlation between N and δρ̂, SfM has a pos-
itive correlation. Spurious matches can still occur and increasing angular separation changes the
perspective, diminishing match and keypoint centroid quality.

Increasing N can benefit SfM for keypoints: N̂p increases with N and, consequently, the angular
separation β1,N between the two outermost views can be increased further before failure than in the
angular separation simulations. For instance, textitEros synchronized keypoints failed at N = 6
(or β1,N = 100◦) in the number of views simulation while Eros synchronized keypoints failed at
β = 64.53◦ in the angular separation simulation. Therefore, increasing N can increase observability
and the number of matches but it also can lead to poor matches if the views become too separated.

Percent of FOV

In Figure 6, δρ̂ decreases as the target’s percent of the FOV γ increases. Because β and θ̇ is
constant, the viewing angle does not change with γ: only the camera’s distance to the target is
modulated. However, as γ decreases, less detail is resolved and the 2D measurements become
closer together in the image, leading to feature co-location in the presence of noise. This results
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Figure 5: Simulation results on how additional views influence V3DR performance.

in poor numerical performance from V3DR,19 increased influence of measurement noise, and less
overall matches because matches are less certain.

The δρ̂ decrease becomes more gradual after approximately γ = 40% in all four plots. Addi-
tionally, N̂p generally increases with γ but the two keypoint-based plots have peaks in N̂p. Eq. (2)
gives two ways of increasing γ: decreasing the distance to the target d or modifying the camera
parameters to decrease f or θFOV. Decreasing the distance to the target decreases mission safety but
it is difficult to change camera parameters after launch.

Rotation Rate

In Figure 7, it is clear that θ̇ influences sequential V3DR but not synchronized V3DR. This is
because β is related to θ̇ through Eq. (7) for sequential imaging only. For full loop-closure of
systems like SNAC or SLAM where sets of synchronized images are taken sequentially,1 V3DR
will be influenced by θ̇.

There is a peak at θ̇ ≈ ω where the sequential images view the same scene every time and
β ≈ 0. Because the observer orbits the target’s spin axis in this simulation, no change in the value
of △t would be able to recover from this. This would not be the case for other orbit geometries
(e.g. inclined with respect to the spin axis). Furthermore, δρ̂ increases as |θ̇| increases when using
keypoints because β increases as well. So if |θ̇ − ω| > 0, an optimal △t and β can be determined
according to Eq. (7) and Figure 4.

Absolute Position Error

Alg. 1 uses the absolute positions of the cameras to reconstruct the 3D points. Thus, the direct,
positive correlation between the standard deviation of the absolute position error σa and δρ̂ seen in
Figure 8 is expected. Looking more closely, σa has the greatest influence on δρ̂ of all the design
parameters evaluated in this paper because it transfers error to δρ̂ at nearly 3× magnification. For
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Figure 6: The effects of the percent of the field of view γ the the target spans on V3DR performance.

instance, for Eros synchronized imaging using keypoints with nominal σa (σa = 100m) the median
error is δρ̂ = 0.011⇒ δP̂ = 363m. The absolute position error comes from spacecraft navigation,
whether it is terrain-relative or GPS-based. Minimizing σa is a difficult task but one of the most
important to mitigate 3D reconstruction error when using SV.

Relative Position Error

According to Figure 9, using a relative position error allows a nearly order of magnitude reduction
in SV error compared to all images having the same σa applied. This is because the relative position
error is an order of magnitude smaller than absolute position error. Furthermore, with nominal
state uncertainties from Table 3, the SV error for Tango is still very high: δρ̂ = 0.843 ⇒ δP̂ =
1.24m. The SV error for Eros comes to a reasonable level with relative position measurements:
δρ̂ = 0.0025 ⇒ δP̂ = 82.5m. This could be due to the large scale of the Eros system and not the
keypoints themselves because the same trend is visible in the model vertices.

Image Acquisition Clock Error

Figure 10 shows that image desynchronization has minimal impact on SV performance. In the
these simulations, Tango has ω = 0.04687◦/s, θ̇ = 1◦/s, and d = 3.01m. If the clocks were off
by 1s, the spacecraft’s desynchronized position would be rotated by 0.0937◦ according to Eq. (9),
adding 5.07mm of error in the along-track direction to the SV computation. The δρ̂ for Tango
synchronized keypoints in Figure 10 is 4.439 × 10−3 (δP̂ = 6.57mm). This is slightly higher than
5.07mm due to the rotation of Tango as expressed in Eq. (10) and the use of keypoints.

Comparatively, if pseudorange were used in this computation according to Eq. (8), the relative
position error due to a clock error of 1s would be on the order of 3 × 108 m. Therefore, when the
clocks are not perfectly synchronized, error will likely be propagated through the relative position
error and not through the actual images becoming desynchronized.
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Figure 7: The effects of the target’s rotation rate θ̇ on V3DR with a constant imaging rate△t. The
red and blue x-labels correspond to Eros and Tango, respectively.

Attitude Error

Looking at Figure 11, there is a positive correlation between the standard deviation of attitude
error σq and δρ̂. Similar to the absolute position, Alg. 1 uses the attitude rotation matrix directly.
However, σq does not have the influence that σa does. In fact, the noise induced by using keypoints
as features nearly overshadows the error introduced by σq, as seen in the right-side plot in Figure 11.
60 arcsecs is 0.0167◦, which results in an along-track error of 0.8773mm for a spacecraft observing
Tango from 3.01m, which is the default distance to the target from the γ in Table 2. Thus, most
pointing sensors available32 will have little influence on V3DR performance.

Synchronized vs. Sequential Imaging

For all of the simulations using keypoints, synchronized imaging performs as well as, if not better
than, sequential imaging. There is negligible difference between the two when model vertices are
used, which indicates that synchronized imaging is correlated with improved keypoint detection
and matching. On average, synchronized imaging had 20% lower δρ̂ across all simulations using
keypoints, or 31% and 10% lower δρ̂ for Eros and Tango, respectively.

CASE STUDIES

Single-Agent, Non-Cooperative Spacecraft Rendezvous

One of the most common applications of target rendezvous is a single spacecraft approaching a
non-cooperative spacecraft whose size, shape, mass, orbit, and rotation rate are unknown. With such
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Figure 8: The effects of absolute position error σa on SV performance. The red and blue x-labels
correspond to Eros and Tango, respectively.

Figure 9: The effects of relative position error σr on SV performance. The red and blue x-labels
correspond to Eros and Tango, respectively.

a lack of information, SfM is the recommended to recover the target’s shape and the observer’s pose.
The rotation rate of the target must still be estimated to ensure adequate angular separation between
the first and last image, but a rough estimate can be obtained through optical flow techniques.

In this case study, one observer orbits the Tango spacecraft while Tango rotates about a single-
axis at θ̇ = 1◦/s. Three relative geometry parameters must be decided: β, N , and γ. Based on
Figures 4 and 6, the ideal parameter ranges are β ∈ [20, 40]◦, N ∈ [2, 4], and γ ∈ [60,∞)%. SfM
begins to fail as β → 40◦ and N → 4 so β and N are chosen to be 20◦ and 3, respectively. The
second image also provides indirect matches between the first and last images. SfM performance
for Tango sequential keypoints plateaus after γ = 60% so ideally γ > 60%. However, this results
in d = 3.9m from Eq. (2), which is very close to the target. Instead, γ is chosen to be 40%, which
results in d = 5.9m.

Figure 12 shows the results of SfM initialization with the proposed setup. For this case, δρ̂ =
0.013383 and δP̂ = 19.807mm, which agrees which is slightly lower than the δρ̂ value for γ = 40%
for Tango sequential keypoints in Figure 2.

Multi-Agent Navigation and Characterization of an Asteroid

Asteroid navigation and characterization historically uses high SWaP-C equipment and frequent
ground-in-the-loop communication. A multi-agent system that uses V3DR in lieu of LiDAR can
increase system redundancy, measurement observability, and autonomy. Telescope observations
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Figure 10: The effects of relative clock offset δtn on multi-agent SV performance.

Figure 11: The effects of attitude error σq on SV performance.

and a long approach phase can determine initial estimates for the target and spacecraft states.3 With
such data available, SV is expected to have a lower error than SfM.

In this case study, a DSS orbits asteroid 433 Eros in the same formation described in Table 1 and
state uncertainty values listed in Table 3. N is set to 3 and β = 15◦. This β increases keypoint
matches but using three agents total increases the total angular separation to 30◦ to maintain V3DR
performance. With Eros as the target, γ can be increased significantly while maintaining a safe
separation from the target so γ = 80%, which results in d = 64.985km.

Figure 13 shows the results of SV with the proposed setup. For this case, δρ̂ = 3.1452 × 10−3

and δP̂ = 103.793m. Like with Tango as the target, this δρ̂ is slightly higher than that of γ =
80% in Figure 2 for Eros synchronized keypoints. Furthermore, these results agree with a previous
publication from the author, Dennison et al. (2021).17 That publication performs a similar case study
for a swarm of three spacecraft orbiting Asteroid 433 Eros using a rigorous dynamics simulation
and an unscented Kalman filter for state estimation.

CONCLUSIONS

Vision-based 3D reconstruction (V3DR) techniques such as stereovision (SV) and structure from
motion (SfM) are underutilized in practice in the space domain. They have great potential for use in
missions where low SWAP-C hardware is a priority. This paper addressed three knowledge gaps that
obscured how V3DR should be implemented in a space mission: 1) V3DR sensitivity to observer
state knowledge, number of observers, target motion, and clock synchronization is rarely studied; 2)
sequential imaging has not been compared directly to synchronized imaging; and 3) techniques are
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Figure 12: Results of SfM initialization on three sequential images from a single agent observing
a non-cooperative spacecraft. Shown are the true observer poses (green cameras), ray-traced target
surface features (green dots), estimated observer poses (red cameras), the reconstructed surface
features (red dots), the Tango 3D shape model (gray), and the lighting direction (blue line).

not harmonized between the various space-domain applications. A sensitivity analysis for SV and
SfM on various multi-agent and multi-view relative geometry parameters as well as several observer
state uncertainty parameters revealed trends in V3DR with respect to these domain gaps.

The results of these simulations determine optimal ranges for image angular separation, the num-
ber of views used for V3DR, imaging rate, and the distance to the target. They also show that
the order of magnitude improvement of relative position error compared to absolute position er-
ror translates directly to SV performance. It is also shown that multi-agent SV is robust to image
desynchonization effects of clock synchronization error. Furthermore, V3DR using synchronized
images from multiple agents is less sensitive to target rotation rate than V3DR using sequential
imaging from a single agent. Synchronized imaging also results in 20% lower error, on average,
than sequential imaging.

Finally, two case studies applied the lessons learned from the design parameter simulations. For
single-agent SfM performed on a non-cooperative spacecraft, points on the target’s surface were
reconstructed with a median error of 19.07mm. The second case study performed multi-agent SV
with realistic a state noise model and resulted in a median reconstruction error of 103.793m.
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Figure 13: Multi-agent, synchronized SV performance of three spacecraft orbiting an asteroid.
Shown are the true observer poses (green cameras), ray-traced target surface features (green dots),
the noisy observer poses used for SV (black cameras), the reconstructed surface features (red dots),
the asteroid 3D shape model (gray), and the lighting direction (blue line).
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