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Abstract— Precise relative navigation is a critical enabler
for distributed satellites to achieve new mission objectives
impossible for a monolithic spacecraft. Carrier phase
differential GPS (CDGPS) with integer ambiguity resolution
(IAR) is a promising means of achieving cm-level accuracy for
high-precision Rendezvous, Proximity-Operations and Docking
(RPOD), In-Space Servicing, Assembly and Manufacturing
(ISAM) as well as satellite formation flying and swarming.
However, IAR is extremely sensitive to received GPS signal
noise, and may fail in adverse environments with severe multi-
path or high thermal noise. This paper proposes a sensor-fusion
based approach to achieve IAR under such conditions in two
coupling stages. A loose coupling stage efficiently fuses through
an Extended Kalman Filter the CDGPS measurements with on-
board sensor measurements such as range from inter-satellite
cross-links, and vision-based bearing angles from a monocular
camera. A second tight-coupling stage augments the cost
function of the integer weighted least-squares minimization with
a soft constraint function using noise-weighted observed-minus-
computed residuals from these external sensor measurements.
Integer acceptance tests are empirically modified by a coefficient
reflecting the added constraints. Partial ambiguity resolution is
applied to graduate integer fixing, where a subset of ambiguities
that maximizes the probability of success is selected for fixing
rather than the full batch of ambiguities. These proposed
techniques are packaged into flight-capable software, with
ground truths simulated by the Stanford Space Rendezvous
Laboratory’s S3 library using state-of-the-art force modelling
with relevant sources of errors, and validated in two scenarios:
(1) a high multi-path scenario involving rendezvous and docking
in low Earth orbit, and (2) a high thermal noise scenario relying
only on GPS side-lobe signals during proximity operations
in geostationary orbit. This study demonstrates successful
IAR in both cases, using the proposed sensor-fusion approach,
thus demonstrating potential for high-precision state estimation
under adverse signal-to-noise conditions.
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1. INTRODUCTION AND BACKGROUND
Precise relative navigation is a key enabler of new distributed
spacecraft mission concepts, paving the way to overcome
fundamental limitations of monolithic spacecraft. Carrier
phase differential GPS (CDGPS) with integer ambiguity
resolution (IAR) is a promising means of achieving cm-
level navigation accuracy in Low Earth Orbit (LEO) and
beyond [1]. CDGPS exploits the error-cancelling effects
of differencing carrier phase measurements between two
receiving spacecraft. IAR addresses the estimation of the
ambiguous number of differenced carrier wave cycles as
a float before resolving them into their true integer form.
After differencing, the IAR step is key to achieving precise
navigation since knowledge of the number of differential
wave cycles leaves us with a phase measurement where
correlated errors have been cancelled and the remnant thermal
noise remains at the mm-level. Once integers are successfully
fixed, the navigator possesses a precise baseline that can
be exploited for high precision estimation of other states or
environmental parameters of interest. This makes CDGPS
with online IAR a very attractive algorithmic choice for
precise real-time state estimation.

CDGPS with IAR is fairly established for applications in
low Earth orbit (LEO) via post-facto processing. Examples
include the GRACE formation flying mission used for high
precision gravimetry [2] and to the TerraSAR-X / TanDEM-X
formation for radar interferometry [3]. The first online, real-
time implementation of CDGPS without IAR aboard Small
Satellites was the PRISMA formation flying demonstration
mission [4] [5] in 2010. Float ambiguities were estimated
using a low-cost single frequency receiver, achieving 5cm
and 1mm/s precision (3D root-mean-square) in real-time
[6]. IAR was not executed due to computational constraints.
Since then, the Stanford Space Rendezvous Laboratory
(SLAB) has developed the Distributed Multi-GNSS Timing
and Localization (DiGiTaL) flight software package capable
of real-time IAR and thus precise relative navigation [7] [8] in
a Kalman filtering framework. DiGiTaL was initially funded
by the NASA Small Spacecraft Development Program [9]
and has been tailored for the upcoming VISORS distributed
telescopy mission (launch due on the SpaceX Transponder-
12 in October 2024). SLAB will attempt a first-ever
demonstration of real-time in-orbit IAR on-board CubeSats
during the VISORS mission, relying solely on GPS L1
signals [10]. This work builds on top of the DiGiTaL
flight software for VISORS, and extends the applicability of
CDGPS with real-time IAR beyond LEO to include harsher
signal conditions in-orbit. The high sensitivity of IAR to
measurement noise makes achieving IAR challenging in high
noise scenarios. This study proposes a two-tiered sensor
fusion approach involving a loose-coupling stage which
performs a joint filter measurement update to include external
sensor measurements such as range and bearing angles,
and a tight-coupling stage where the same external sensor
measurements are incorporated into the integer search and
optimization step during IAR.
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2. THE PROBLEM STATEMENT
Achieving real-time IAR in environments suffering from
adverse noise conditions is challenging for a navigation filter.
The covariance of float estimates must converge sufficiently
before attempting an integer resolution, typically exceeding
a stringent 99% probability of success as the recommended
threshold in literature [11]. For GPS L1, λ = 19.05cm,
the measurement noise must be far lower than the maximal
quarter-wavelength limit λ/4 ≈ 5cm so as to resolve
wave cycles to their correct integers without ambiguity. An
under-confident filter would not achieve a steady-state float
ambiguity covariance that satisfies the desired probability
of success, while an over-confident filter risks resolving
floats into the wrong integer value and severely degrade
navigation performance if the wrong fix remains undetected.
Therefore, even with additional metrologies provided for
sensor fusion, there is a need for careful filter design, tuning,
and validation through high-fidelity simulations so as to
achieve IAR success under such adverse scenarios. Two
such scenarios are investigated in this study: (i) rendezvous
and docking near highly reflective structures with multi-
path effects in Low Earth Orbit (LEO), and (ii) proximity
operations in Geostationary Orbit (GEO) relying only on
sidelobe signals with poor C/N0 and thus high thermal noise.
In the case of a receiver in LEO, this is compounded by short
time-visibility of tracked integers (typically < 15 minutes)
due to a rapidly changing GPS constellation geometry. These
challenging scenarios are explored and elucidated in Section
6. This paper seeks to address the challenge of unlocking
precise state estimation in these harsh environments through
IAR. The problem statement is thus succinctly stated as:

How can IAR be achieved between distributed
space systems operating under adverse signal

thermal noise and multi-path?

The remainder of this paper is organized as follows: Section
3 reviews concepts of CDGPS and IAR. Section 4 reviews
relevant literature. Section 5 details the key contributions
of this work and the implementation details of packaging
into flight-ready software. Section 6 specifies the detailed
simulation setup for each scenario. Section 7 demonstrates
and discusses simulated flight results of applying these
strategies to challenging environments. Section 8 concludes
by reviewing the contributions made in this work.

3. REVIEW OF CDGPS AND IAR
This section reviews the preliminaries of CDGPS and IAR
in order to facilitate understanding of the state-of-the-art
in literature that will be covered in the next section. The
standard undifferenced carrier phase measurement model
with wavelength λ, between a receiver’s antenna A and a
transmitting GPS antenna P as per [1], is given by

λϕ
(P )
A = R

(P )
A + λN

(P )
A + I + c

(
δtA − δt(P )

)
+W (P ) + ε

(P )
A (1)

where the carrier phase between A and P in distance units
λϕ

(P )
A is the sum of the geometric range R

(P )
A , offset

by ambiguous integer cycles N
(P )
A , and corrupted by: an

ionospheric delay I , the receiver clock bias cδtA, GPS
satellite clock bias cδt(P ) from P , phase wind-up effects

Figure 1: Geometry of single-difference carrier phase

Figure 2: Geometry of double-difference carrier phase

W (P ), and thermal noise ε
(P )
A . For a detailed analysis

of carrier phase measurement error budgeting, the reader
is invited to peruse [1] and the work of Psiaki et al [12].
For cooperative spacecraft with an inter-satellite cross link,
these measurements can be communicated to each other and
differenced. This Single Difference (SD) operation is defined
by ∆(·)(P )

AB = (·)(P )
A − (·)(P )

B . As a result, correlated errors
over a short baseline I , cδt(P ) and W (P ) cancel out in the
SD operation, resulting in a Single Difference Carrier Phase
(SDCP) measurement as

λ∆ϕ
(P )
AB = ∆R

(P )
AB + λ∆N

(P )
AB + c∆δtAB +∆ε

(P )
AB (2)

Geometrically relating equation 2 with Figure 1, ∆R
(P )
AB

forms the base of a right-angled triangle with the baseline
−−→
AB as the hypotenuse. One may further take differences
of two SDCP measurements between GPS satellites P and
Q. This is the Double Difference (DD) operator defined by
∇∆(·)(PQ)

AB = ∆(·)(P )
AB − ∆(·)(Q)

AB . Common differential
receiver clock biases are eliminated in the Double Difference
Carrier Phase (DDCP) measurement model given by

λ∇∆ϕ
(PQ)
AB = ∇∆R

(PQ)
AB + λ∇∆N

(PQ)
AB +∇∆ε

(PQ)
AB (3)
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Geometrically relating the equations again, ∇∆R
(PQ)
AB is a

linear combination of the baseline
−−→
AB projected onto each

line-of-sight unit vector as per Figure 2. The lines-of-sight
ĝ(P ) and ĝ(Q) are known from the GPS satellite antenna
and an estimated receiver antenna position. The DDCP
measurement model can be re-arranged from equation 3 into
a least-squares solvable form given multiple measurements,

λ∇∆ϕ
(PQ)
AB =

(
ĝ(P ) − ĝ(Q)

)
·
−−→
AB

+∇∆N
(PQ)
AB +∇∆ε

(PQ)
AB

(4)

where the baseline
−−→
AB and ∇∆N

(PQ)
AB DDCP ambiguities

are unknown states that can be solved by least squares
(with multiple measurements of equation 4) or by sequential
filtering. With DDCP measurement noise typically at
the mm-level, fixing the float ambiguities into integers
with sufficient certainty allows the filter to converge the
state estimate of baseline coordinates towards an equivalent
precision of the thermal noise. This illustrates the critical
reliance of precise relative navigation on successful IAR.

From this point onwards, the notation∇∆(·)(PQ)
AB is dropped

for brevity when describing ambiguities. Thus, the ambiguity
vector N refers to DDCP ambiguities. The tilde notation Ñ
is introduced to refer to DDCP float ambiguities. The most
well-established approach for IAR is done via minimization
of the Integer Least Squares (ILS) objective using the Least
Squares Ambiguity Decorrelation Adjustment, or LAMBDA
[13] method described below. IAR implementation in
DiGiTaL [7] [8] [10] is detailed in Section 5.

A discrete search for the integers must be performed due
to the integer nature of the ambiguities [13]. As DDCP
measurements are highly correlated due to a common
single-difference reference measurement from GPS satellite
Q, LAMBDA reduces the size of this search space by
decorrelating the ambiguities using the integer-preserving Z-
transform which begins with an LDL decomposition of the
DDCP float ambiguity covariance matrix QÑ

QÑ = LDLT (5)

where L is a lower uni-triangular matrix and D is a matrix
of positive diagonals, obtained from the decomposition of the
symmetric positive definite covariance QÑ . The matrix D
in particular is useful as a measure of the variance of float
ambiguities after decorrelation. The Z-transform matrix Z
is an integer approximation of L that fulfils the requirements
given in [14]. Z is then applied to the distribution of n float
DDCP ambiguities Ñ for decorrelation,

QÑz
= ZTLDLTZ ≈ D (6)

Ñz = ZT Ñ

The result is a mean and covariance that is nearly decorrelated
(not completely due to the integer constraints). Next, Ñz

undergoes recursive conditional rounding N
(B)
Z ← Ñz

using the integer bootstrapping technique [11], where [·]
denotes a rounding operator, subscript (Z, i) indicates the
ith ambiguity in the vector of Z-transformed ambiguities,

and I = 1, 2, ..., i − 1 are indices of previously rounded
ambiguities, in the equations

N
(B)
Z,1 =

[
ÑZ,1

]
N

(B)
Z,2 =

[
ÑZ,2|1

]
=

[
ÑZ,2 −

σ2,1

σ2
1

(
ÑZ,1 −NZ,1

)]
...

...

N
(B)
Z,n =

[
ÑZ,n|N ]

]
=

[
ÑZ,n −

n−1∑
i=1

σn,i|I

σ2
i|I

(
ÑZ,i|I −NZ,i

)]
(7)

while the σi,j terms in the bootstrapping equations 7 are
elements of the lower-triangular L and diagonal D matrices
resulting from LDL decomposition as follows

L =


1

σ2,1

σ2
1

1

...
. . .

. . .
σn,1

σ2
1

· · ·
σn,n−1|N−1

σ2
n−1|N−1

1

 , D =


σ2
1

σ2
2|1

. . .
σ2
n|N


The success rate of the bootstrapped integers was proven to be
greater than or equal to that of simple integer rounding [11].
Thus, using the bootstrapped integers as an initial point to
begin the integer search is favoured over using rounded floats.
The Mahalanobis distance χ between float-to-bootstrapped
integers provides a reasonable search-width

χ = ||N (B)
z − Ñz||2Q−1

Ñz

(8)

An integer search that minimizes the objective function is
then performed over the decorrelated space,

min
Nz

||Nz − Ñz||2Q−1

Ñz

(9)

where Nz is the candidate (Z-transformed) vector of integers.
When the best candidate can no longer be improved, it is only
resolved into an integer if it passes the closed-form success
rate test in equation given by

P(success) =
n∏

i=1

√
1− exp

(
− 1

8d2i

)
> κP (10)

where n is the number of tracked DDCP ambiguities, di are
ith diagonals of the matrix D in equation 10. It must also
pass a discrimination test

∥∥∥N†
z − Ñz

∥∥∥2
Q−1

Ñz

/∥∥∥N‡
z − Ñz

∥∥∥2
Q−1

Ñz

> κD (11)

where N†
z and N‡

z in equation 11 are the best and second best
vector of candidates found. The success thresholds κP =
99% and κD = 3 are commonly used in literature [11].
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4. LITERATURE REVIEW
Literature which specifically addresses real-time IAR for
high-precision in-orbit operations under adverse noise is
limited, which is unsurprising considering the challenge of
real-time in-orbit IAR per se. In fact, to the best of the
authors’ knowledge, the VISORS mission will be the first
to attempt this [10], due for launch in October 2024 on the
SpaceX Transponder-12. This gap in literature and practice
is an opportunity for this paper’s contributions. The nature of
the noise sources listed in Section 2 prompted this study to
segregate the literature review into two broad directions. The
first track explores existing on-board metrologies for sensor
fusion in order to overcome the innate noise ‘barriers’ in a
noisy signal environment. The second track reviews how new
integer search and optimization techniques have evolved in
the state of the art, and investigates if they can be adapted for
rapid real-time integer resolution under a rapidly changing
GPS/GNSS geometry.

Reviewing Sensor Fusion for In-Orbit IAR

Sensor fusion is a commonly adopted practice in literature
for automotive and robotics applications requiring the
circumvention of poor GNSS visibility and noise challenges
in urban canyons. A full suite of sensors fused could include
range finders, vision-based navigation, and differential GPS
with respect to a reference station [15]. For in-orbit
applications, two independent studies by Renga [16] and
Yang [17] have studied the effects of ranging measurements
on IAR performance under in-orbit simulations. Both studies
employed an EKF with float ambiguities in the state vector,
and both had agreeable demonstrations showing that ranging
accelerates the filter’s estimate of float ambiguities while also
smoothing out navigation error anomalies. The coupling of
actual laser ranging with CDGPS in-practice is intended to be
demonstrated during the VISORS mission [10]. Another set
of studies investigated the fusion of bearing angles extracted
from vision-based navigation and CDGPS with IAR in GEO
under high thermal noise, by Capuano et al [18] [19]. This
study demonstrated that using angle measurements from
point-registered, LED-aided, features on a close-range target
accelerates float ambiguity convergence despite a drastically
high thermal noise influence on the received carrier phase
of GPS sidelobe signals in GEO. Overall, sensor fusion
offers a promising direction towards achieving IAR under
harsh operating conditions especially with the inclusion of
metrologies agnostic to GPS/GNSS noise conditions.

Reviewing Integer Ambiguity Resolution Algorithms

Integer resolution is often achieved through the minimization
of the ILS objective function. LAMBDA has remained state
of the art as a means of solving this, since its introduction
[13] [20], with little change to the core algorithm. The
Integer Least Mean-Squared (ILMS) error was proposed as
an alternative objective to ILS, where it was proven that a
wider class of integer equivariant estimators were optimal
for minimizing ILMS rather than ILS [21]. Still, ILS
minimization using LAMBDA-based techniques have been
the most common approach in literature for tackling the
IAR problem. Variants of LAMBDA, such as the Modified
LAMBDA (mLAMBDA) [22], have focused on improving
computational efficiency by exploiting the structure and
symmetry of the matrices. LAMBDA with search constraints
garners recent interest to address robustness and accuracy
of the integer search. Henkel formulated a variant of
LAMBDA with inequality constraints [23], enforced by
augmenting the cost function in 9 with a penalty or barrier
function. Jurkowski applied this concept of penalties to

a baseline defined by a finite tether of known dimensions
(length and orientation) for freight stabilization [24], where
physical dimensions of the tether formed a-priori constraints
on integer search resulting in significant improvements in
baseline estimation. To address the problem of limited
time visibility of integers and rapid IAR, Teunissen proposes
a partial ambiguity resolution (PAR) variant of LAMBDA
[25]. Classical LAMBDA resolves integers as a full batch.
LAMBDA with PAR relaxes this condition, selecting only a
subset of ambiguities that maximizes some metric success.
Teunissen proposes the ambiguity dilution of precision
(ADOP) as one such metric [26]. Parkins explores both
ADOP and the signal-to-noise ratio as metrics, applying
it to single-epoch PAR in terrestrial receivers, thereby
circumventing carrier phase cycle slip management [27].
Medina fuses both LAMBDA with constraints [23] and
LAMBDA with partial resolution [25] by introducing a
precision-driven LAMBDA PAR variant where the formal
precision of the fixed solution is included in the cost function
as a constraint and the partial subset selection is realized
based on the projection of the ambiguities into the position
domain [28]. In summary, the application of constraints in
the IAR process offers the advantage of either robustifying
the integer search using a-priori information, or enforcing
the necessary navigation precision requirements in the cost
function. The adoption of a partial resolution strategy is
shown to accelerate time-to-first-fix integer resolution, which
is a significant advantage for a rapidly changing GPS/GNSS
geometry, observed particularly in low Earth orbit. These
advantages inspired their adoption in this work.

5. NAVIGATION ARCHITECTURE
Overview of Navigation Architecture

The navigation architecture adopted in this study builds on
a tailored variant of SLAB’s DiGiTaL flight software [7]
[8]. DiGiTaL leverages the powerful error-cancellations of
the Group and Phase Ionospheric Calibration (GRAPHIC)
measurements [29] for absolute position estimation, and
the Single-Difference Carrier Phase (SDCP) measurements
for precise baseline estimation between two cooperative
and communicating spacecraft across an inter-satellite link
[4]. The filter also accepts other non-GPS external sensor
measurements such as range from a rangefinder and bearing-
angles from vision-based sensors such as star trackers, at
far-range. It is assumed that bearing angles are resolvable
through an image processing module [30].

The navigation filter of each spacecraft tracks both local
(chief) and remote (deputy) spacecraft states

x⃗ =
[
r⃗c, v⃗c, α⃗e,c, cδtc, r⃗d, v⃗d, α⃗e,d, cδtd, ÑZD, ÑSD, B⃗

]
(12)

where r⃗c, v⃗c, r⃗d, v⃗d, are the Earth-centered inertial (ECI)
positions and velocities of the chief and deputy spacecraft
center of mass respectively. Dynamic model compensation
through the estimation and application of stochastic empirical
acceleration terms α⃗e,c, α⃗e,d account for unmodelled
dynamics [31]. These are applied as perturbative forces in
the radial-tangential-normal (RTN) frame of the chief (or
target), and added to the force model of the orbit propagation
step in the filter time update, which is a numerical orbit
propagation using the GRACE GGM-05S model of degree
and order 20, plus the empirical accelerations. For GPS L1,
the receiver clock offset of the chief cδtc and deputy cδtd are
scalars. Receiver clock offsets and empirical accelerations are
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Figure 3: The DiGiTaL navigation flight architecture with three key blocks: (1) the data interface which handles message
routing, coordinate transformations, and validation of measurement time-tags of both GPS (green blocks) and non-GPS external
sensor measurements (orange blocks), for both the local spacecraft and a remote partner spacecraft; (2) an orbit determination
block driven by an EKF (purple blocks); and (3) the IAR block which fixes, decorrelates, and performs a constrained integer
search with partial resolution of DDCP ambiguities (blue blocks)

modelled as first-order Gauss-Markov processes. Receiver
clock offsets are prescribed an infinite time constant in
order to describe a random walk process [4]. States ÑZD

and ÑSD ∈ R24 are the undifferenced and SDCP float
ambiguities. ÑSD floats are resolved into integers only upon
satisfying acceptance tests [11], as depicted in Figure 4. The
filter also tracks (possible) sensor biases of the external sensor
measurements. These are captured in a 3×1 state B⃗ for range,
azimuth and elevation angle biases as seen in the local sensor
frame (see Figure 5 in next section). The total state vector
size is x⃗ ∈ R71.

The time update of the navigation filter is not a direct update
to the filter states, but rather an update to the coefficients of
a 5th order Hermite polynomial fitted over the states to allow
for on-demand interpolation at a much higher time resolution.
This approach was successfully flown on the BIRD [32] and
PRISMA [4] missions. All filter parameters are listed in the
Appendix, Table 6.

The principal contribution to state-of-the-art in this paper is
an integrated three-step architecture for achieving IAR under
adverse signal-to-noise conditions, through sensor and data
fusion: (i) a loose coupling stage where non-GPS external
sensor measurements are fused with CDGPS measurements

in the Kalman filter measurement update; (ii) a tight coupling
stage where the external sensor measurements are directly
incorporated into the ILS minimization in order to assess the
quantified agreement between the integer candidates and the
external sensor measurements; and (iii) a partial resolution
step with modified acceptance tests that empirically accounts
for the influence of this quantified agreement on the
success rate. This agreement is evaluated for each integer
candidate during the search. The result is a comprehensive
navigation architecture that integrates CDGPS measurements
with sensor coupling through a multi-stage process, packaged
into a unified and flight-capable software in C++. Such an
architecture has yet to be proposed in literature, much less
validated through high-fidelity simulations. This is the key
contribution behind this work.

Additionally, another critical innovation that enables the
practicality of this architecture is its ability to balance
computational efficiency with navigation precision. With
a covariance matrix of size 71 × 71, matrix operations
necessitate computational optimizations such as sparse
matrix operations, leveraging symmetry during matrix
decompositions, and online resizing of the covariance matrix
through dynamic programming whenever possible. These
optimizations enable rapid online state updates with IAR on
a flight computer at an estimated cadence < 30 seconds [10].

Figure 4: An expanded view of the IAR block illustrating the sequential steps of integer resolution in DiGiTaL
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Loose-Coupling Implementation

The motivation for the loose coupling stage arises from the
prevalence of on-board sources of metrologies which are
agnostic to GPS/GNSS signal noise conditions [16] [17] [18]
[19]. On-board cameras and star-trackers provide angles-
only measurements of targets typically at ≈ 100 arcsec
precision, after measurement assignment in resolved images.
The ARTMS software on-board the NASA Starling mission
is a prime example [30]. Range measurements can be
embedded in the cross-link via asymmetric two-way ranging
[33], or through a laser-range finder which offers mm-level
precision [10]. A joint filter measurement update with
CDGPS measurements are then performed.

It is important to note that any improvement to the filter’s
distribution about the float ambiguities ÑZD and ÑSD
happens only indirectly from the external measurements,
since ambiguities are not observable from these sensor
measurements. The distribution of ambiguities ÑZD and
ÑSD improve because there is an improvement in the
estimation of baseline coordinates r⃗c and r⃗d, which are
correlated with ambiguities; hence the term ‘loose’ coupling.

The first practical consideration in implementation is that the
introduction of new sensors may introduce biases that may
degrade or evolve over time once in-orbit if not calibrated
during flight. This necessitates the estimation of sensor biases
B⃗ = [BR, Bα, Bε] in the state, as seen in equation 12.

Figure 5: Bearing angles subtend the line-of-sight vector in
the vision-based sensor frame, υ (left), and localize the target
pixel cluster in the image plane (right)

The second consideration is that incorporating sensor
measurements observed in different frames requires accurate,
time-tagged, attitude information in order to transform
coordinates between each sensor reference frame. For
example, GPS measurements are typically applied in an
Earth-centered Earth-fixed (ECEF), whereas vision-based or
ranging measurements are taken in a local boresight-aligned
sensor frame, as depicted in Figure 5. Thus, it is crucial that
the attitude time-tag matches the time-tags of measurements,
possibly through interpolation, so that measurements are
commensurable across different coordinate systems when
applying the filter measurement update.

The GRAPHIC measurement is an ionospheric-free linear
combination of undifferenced code pseudorange ρrange and
carrier phase λϕ

(P )
A between the antenna phase centers of

receiver A and transmitting GPS satellite P, which eliminates
a significant fraction of the code delay and phase advance of
the GPS L1 signals through the ionospheric medium,

ρgraphic =
1

2
ρrange +

1

2
λϕ

(P )
A (13)

while the SDCP measurement model from equation 2 is re-
expressed here for convenience

λ∆ϕ
(P )
AB = ∆R

(P )
AB + λ∆N

(P )
AB + c∆δtAB +∆ε

(P )
AB (2)

For modelling the external sensor measurements in this study,
it is assumed that both the rangefinder and camera share the
same boresight unit vector and thus the same local sensor
coordinate frame υ as depicted in Figure 5, with coordinate
axes [x̂υ, ŷυ, ẑυ]. It is also assumed that there are no sensor
mounting boresight errors, and the body-frame mounting
offset from the center of mass is known. Let ρ⃗(υ) be the
relative position vector from chief to deputy in the υ frame,
and let || · || denote the L2 norm operator. Then, the range and
angles-only measurement models are

R̄ =
∥∥∥ρ⃗(υ)∥∥∥+BR (14)

ᾱ = sin−1

(
ρ⃗(υ) · ŷυ∥∥ρ⃗(υ)∥∥

)
+Bα (15)

ε̄ = tan−1

(
ρ⃗(υ) · x̂υ

ρ⃗(υ) · ẑυ

)
+Bε (16)

where the bar notation (̄·) denotes computed measurements
as opposed to observed measurements (no bar). As an
implementation detail, it must be noted that the Jacobians
of the observations HR, Hα and Hε are taken with respect
to components of [x̂υ, ŷυ, ẑυ] in the sensor frame, and
thus care must be taken when applying the Kalman filter
measurement updates to states in equation 12 that are
expressed in the ECI frame. The observation Jacobian
Hi (where i ∈ [R,α, ε]) must be transformed by the
3 × 3 direction cosine matrices Θυ

ECI mapping ECI frame
coordinates to sensor frame coordinates,

HECI
i = Hi Θ

υ
ECI (17)

which again underlines the importance of accurately time-
tagged attitude coordinates in order to prevent coordinate
transformation errors in both the measurements and their
Jacobians Θυ

ECI. The sensor Jacobians in the υ-frame are
appended in the Appendix.

For simulation purposes, the sensor noise budgets in Table 1
below are assumed throughout the study,

Table 1: External aiding sensor error budget

Measurements R α ε

Bias 50 mm 500 arcsec 500 arcsec
Std. Dev. 5 mm 100 arcsec 100 arcsec

A back-of-the-envelope calculation can be done to assess the
impact of external sensor measurements on IAR success rate,
assuming that the bias state vector B⃗ converges to the correct
value. Consider the steady-state covariance Σ∞ of tracked
SDCP ambiguities ÑSD, assumed to be uncorrelated and
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thus having a diagonal covariance. Then, Σ∞ at steady-state
can be approximated by solving the quadratic Discrete-Time
Algebraic Riccatti Equation (DARE) for the linear Kalman
filter (only for approximation purposes),

Σ∞ = AΣ∞AT +Q

−AΣ∞CT
(
CΣ∞CT +R

)−1
CΣ∞AT

(18)

where linear time-invariance is assumed for only ÑSD states,
the state transition matrix A is the identity matrix of the
appropriate dimensions, with a sensitivity matrix C = λ1T,
as per the SDCP measurement model equation 2, and Q =
I×10−3 cycles. Diagonals of Σ∞ are applied into the success
rate test given in equation 10, assuming 10 float ambiguities,
and GPS L1 λ = 19.05cm to produce the following back-of-
the-envelope estimates for the IAR success rate,

Table 2: Back-of-the-envelope IAR success rates at
steady-state, for 10 tracked SDCP float ambiguities

R λ/4 λ/8 λ/40

Success Rate 28.17% 51.79% 95.41%

The first scenario with R = λ/4 represents the CDGPS
measurements under the theoretical maximum carrier phase
noise due to multi-path influence [34], and no external sensor
measurements are applied; the second scenario with λ/8
represents a user-equivalent range-error using bearing angles,
with errors scaled to the arc-length at a 50m range, following
the error budget in Table 1; the third scenario with λ/40
represents a user-equivalent range-error when applying a
precise laser ranging measurement following Table 1. Flight-
like simulation results detailed later in Section 7 would
support the idea that external measurements do indirectly
increase the success rate of IAR in the loose coupling step.

Tight-Coupling Implementation Details

The motivation for the tight coupling stage is to provide
an additional data editing step during integer search and
resolution by directly incorporating the external aiding
measurements in the choice of candidate integer ambiguities.
The initialization of tight-coupling is similar to LAMBDA
where the Z-transform is applied on the distribution (mean
and covariance) of the DDCP ambiguities as per equations 5
and 6, followed by integer bootstrapping in order to obtain an
initial guess and also set the search width of the integer space.

From here, the tight-coupling algorithm begins the search
for the optimal DDCP ambiguity vector using a local best-
neighbour search, also known as the Hooke-Jeeves method
(see Algorithm 7.5 in [35]), with a pre-defined step size k
per iteration. Each step taken is in terms of the number
of ambiguity cycles from the previous vector of integer
candidates. The search evaluates the total cost at the current
choice of integer candidates, and then evaluates the cost for
each step in ±k directions, accepting the best improvement
it finds for each ambiguity. If no improvements are found,
the step size decreases by 1 cycle, and the process continues
until k = 0. The cost function evaluated at each iteration
is the sum of two individual costs. The first cost term is the
weighted least squares cost CN of integer selection, identical
to the cost function 9 in the original LAMBDA

CN =
∥∥∥Nz − Ñz

∥∥∥2
Q−1

Ñz

(19)

while the second cost term is the penalty cost quantifying
how much the selected candidate set of integer ambiguities
violates the suggested baseline based on the external aiding
sensor measurements,

Cext =
(α− ᾱ)2

Rσ2
α

+
(ε− ε̄)2

Rσ2
ε

+
(R− R̄)2

σ2
R

(20)

where [R, α, ε] are the observed aiding measurements;
[R̄, ᾱ, ε̄] are the computed aiding measurements; σα, σε,
and σR, are the sensor noise sigmas of the bearing angle and
ranging sensors which are assumed known due to pre-flight
calibration. The costs of violating angular constraints are
weighted by the inter-satellite range R due to the arc-length
error that scales linearly with range.

Since there is no explicit means of obtaining the computed
external aiding measurements from the DDCP equations as a
function of each candidate DDCP ambiguity vector, [R̄, ᾱ, ε̄]
quantities are derived from obtaining the candidate baseline
solution from each candidate set of DDCP ambiguities during
integer search. The baseline can be solved in closed-form via
the least-squares solution of a system of DDCP observations,
where each observation is given by equation 4. In matrix
form, the DDCP geometry matrix is G, while Φ refers to
the vector of DDCP measurements, and Ncand refers to the
candidate set of ambiguities in the current search iteration

ρ̄ = (GTG)−1GTλ(Φ−Ncand) (21)

The computed candidate baseline ρ̄ in equation 21 is
expressed in ECI and must be transformed into the basis of
the external aiding sensor frame ρ̄(υ) ← ρ̄ using the direction
cosine matrix Θυ

ECI. The computed range and/or bearing
angles [R̄, ᾱ, ε̄] are obtained using the measurement models
in equation 14, 15, 16, and compared with the observed
range and/or bearing angles [R, α, ε] in the cost function
20 as the norm-squared, noise-weighted sum of observed-
minus-computed residuals. The total cost evaluated during
the integer search is simply the sum of equations 19 and 20,
and the minimization is described by

min
Nz

(CN + Cext) (22)

The addition of the penalty cost function in equation 20 can
be better appreciated with a snapshot of the cost functions
with and without constraints. These snapshots are taken from
an example simulation under maximum multi-path influence,
across an integer subspace spanned by two unresolved DDCP
float ambiguities in Figures 6 and 7,
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Figure 6: Sampled cost function without constraints (only
weighted integer selection costs 19 are considered)

Figure 7: Sampled cost function with constraints (the total
constrained cost 22 is considered)

The sample snapshots were taken at an instance where
all float ambiguities remain unresolved and the theoretical
success rate test (in that snapshot) evaluated to 9.37% using
equation 10 for all n DDCP float ambiguities. Inter-satellite
range in this sample was 40.0m. The □ box is the ground
truth DDCP integer tuple. The global minimum of the
cost function after a-priori constraints are imposed is shifted
much closer to the ground truth value of the DDCP integer
ambiguity. This single-epoch example illustrates the potential
improvement in accurate integer fixing with the addition of a-
priori constraints despite a low P(success) value.

The tight-coupling implementation is outlined in Algorithm
1, which should be executed only after the LDL decorrelation
and bootstrapping. The algorithm is initialized with n

bootstrapped DDCP ambiguities, N (B)
z , and an initial user-

defined step size k.

Partial Ambiguity Resolution with Modified Success Rate Test

The metric of success employed by the partial ambiguity
resolution algorithm has been modified from its original
form in equation 10 to a form that captures the improved
robustness of imposing a-priori constraints. The closed-form
success rate conditioned on external measurements is not
easily found, since as aforementioned, there is no explicit
dependency between the distribution of the external sensor
measurements and distribution of the integer ambiguities.
Thus, an empirical modification to the success rate test is
proposed with an added coefficient Sγ as

P(success) =
m∏
i=1

√
1− exp

(
−Sγ

1

8d2i

)
> κP (23)

Sγ =

(
Cbest

Cinit

)γ

(24)

where m is the number of ambiguities in the partial subset,
rather than all n unresolved ambiguities; Cinit and Cbest
are the constrained costs evaluated initially and finally after
execution of Algorithm 1. To decide on the number m of
candidates selected in the partial subset, the elements in the
vector of ambiguities Nz are re-arranged in ascending order
of their decorrelated variances after executing Algorithm 1.
Then, each ambiguity is successively considered for integer
resolution until the entire subset grows in size to the largest
possible m value such that it fails to meet the modified
success rate test and discrimination test. The subset of fixed
integers that pass the acceptance tests will directly replace
their previous float estimates with integer values while also
zeroing out the state covariances of fixed integers.

Figure 8: Notional diagram illustrating the re-ordering of
DDCP ambiguities in ascending value of their decorrelated
covariance diagonals di with successive resolution

The cost improvement coefficient S can be thought of as
an empirical measure of the cost savings after executing
Algorithm 1, since the diagonals of the decorrelated float
ambiguities do not directly reflect the influence of the external
aiding sensor measurements in the unmodified success rate
test 10. The exponent term γ is a float hyper parameter that
influences the weight of the coefficient S. The naturally
intuitive choice of γ = 1/m performs well in flight-like
simulations, as will be demonstrated in Section 7. The
threshold success rate κP remains unchanged at 99% as
recommended in literature.
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Algorithm 1 Integer Search under Tight-Coupling

Require: N
(B)
z and k and external aiding measurements [R,α, ε]

1: Cinit ← CN + Cext ▷ Initialize cost using equations 19 and 20

2:
[
N

(1)
z , N

(2)
z

]
← N

(B)
z ▷ Initialize the 1st and 2nd best candidates

3:
[
C(1), C(2)

]
← Cinit ▷ Initialize the 1st and 2nd best candidate costs

4: while k > 0 do
5: improvements← false

6: for i ∈ [1, 2, ... n] do ▷ For each float ambiguity

7: for step ∈ [−k,+k] do ▷ Step forward and back in the ith dimension

8: N step
z ← N

(1)
z

9: N step
z [i]← N step

z [i]+ step

10: N step ← Inverse Z-transform of N step
z

11: ρ̄step ← (GTG)−1GTλ(Φ −N step) ▷ Equation 21

12: [R̄, ᾱ, ε̄]← Get computed (C) external measurements using ρ̄step ▷ Equations 14 15 16
13: [R, α, ε]← Get observed (O) external measurements ▷ Query from sensor

14: Cstep ← CN + Cext ▷ Equations 19, and 20 using O-C residuals
15: end for
16: Save the best Cstep for step ∈ [−k,+k]

17: if Cstep < C(1) then

18: N
(2)
z ← N

(1)
z

19: N
(1)
z ← N step

z

20: C(2) ← C(1)

21: C(1) ← Cstep

22: improvements← true

23: end if
24: end for
25: if improvements == false then
26: k ← k − 1 ▷ Reduce step size if the search did not yield improvements
27: end if
28: end while

29: return
[
N

(1)
z , N

(2)
z

]

9



6. FLIGHT SIMULATION SETUP
In this section, we validate the proposed technique of loose
and tight coupling in order to assess the navigation and IAR
performance. Two scenarios are considered here:

• Scenario 1: Rendezvous and docking with the
International Space Station (ISS) in LEO

• Scenario 2: Rendezvous and docking with a
geostationary micro-satellite in GEO

The ground truth trajectory is generated in C++ using SLAB’s
high-fidelity S3 astrodynamics library as per 9 below. The
gravity model uses the GRACE GGM-05S gravity model
with a degree and order of 60, in addition to third-body
influences by the Sun and Moon; the atmospheric density
was modelled using Harris-Priester; and the solar radiation
pressure computed is based on the analytical ephemeris of
the Sun with a cylindrical shadow model. Trajectories
generated in S3 were also exported and visualized in STK
(a commercial astrodynamics software),

Figure 9: Flight-like simulation setup with DiGiTaL

For modelling code pseudorange and carrier phase errors, the
ionospheric error is modelled via the Klobuchar model with
code phase delay equal and opposite to carrier phase advance.
Clock errors are modelled as a random walk in distance
units, where the random walk’s step size per second is
sampled from a zero-mean Gaussian with σcδt = 1.0m. The
thermal noise of both code and carrier phase are significant
influences on CDGPS and IAR performance as these are
non-systematic errors that cannot be cancelled via the linear
measurement combinations of GRAPHIC and SDCP [34]. As
such, the resultant thermal noise was derived with particular
care from the expected C/N0 using a detailed link budget
analysis in Table 5. Factors considered include the receiver
internal losses, antenna gains, and the phase-locked-loop
(PLL) bandwidth’s effects on carrier tracking performance.
Specifications from a Novatel OEM628 receiver card were
taken as reference, which are applied to a validated error
model provided by [12] and [8].

GPS ephemeris errors are injected as a corruption of orbital
elements in the GPS broadcast message using relative orbital
elements (ROE). This introduces periodic variations of the
Cartesian error as predicted by the mapping between the
ROEs and Cartesian coordinates [36]. ROEs were chosen to
enact an equivalent root-mean-square error of 1.5m in the
GPS ephemeris with zero along-track drift. This method
of injecting errors is a more realistic representation of
simulating how a broadcast ephemeris’ error propagates
systematically rather than randomly, until the receiver’s next
broadcast update.

For modelling multi-path, a simplified Gaussian shadowing
model is proposed. The model is by no means a
geometrically accurate reflection of the both the local and
remote spacecraft’s structural influences. It introduces only
order-of-magnitude equivalent effects on GPS measurement
errors. Two sources of multi-path are distinguished: the
near-field multi-path is elevation-dependent and imposed by
reflections and shadowing effects cast by the spacecraft’s
local appendages, as was observed in CHAMP and GOCE
missions [34]; the far-field multi-path is imposed by
reflections from an external object, such as a partner
spacecraft during rendezvous at close range. These two
distinct phenomena were demonstrated to be distinguishable
through carrier phase measurement residuals before and after
the separation of both the Mango and Tango formation flying
spacecraft during the PRISMA SAFE experiment [5]. The
near and far-field multi-path models assumed are

Mk,near = Akcos2(εq) (25)

Mk,far =
Ak

(AkR+ 1)2
exp

[
−
R

S

(
(αq − α)2 + (εq − ε)2

)]
(26)

where the net multi-path noise is assumed additive to the
measurements; identifier subscripts k ∈ [ρ, ϕ] denotes multi-
path influence on code pseudorange (ρ) or undifferenced
carrier phase (ϕ); Ak is an amplitude term; α and ε are
the elevation and azimuths of the target spacecraft in the υ
frame as per Figure 5; αq and εq are the queried azimuths
and elevations corresponding to the direction of arrival of the
GPS L1 signal; S is a size factor that scales with the far-
field target’s physical size, reflecting the size of the multi-path
footprint cast by the external body on the receiving antenna’s
azimuth-elevation profile as illustrated in Figure 10; and R is
the range between the local spacecraft to the far-field (target)
object. Total multi-path noise on a GPS measurement arriving
from αq and εq directions are computed by sampling a zero-
mean Gaussian distribution whose standard deviation is the
sum of the individual effects given by equations 25 and 26.
Parameters Ak and S are selected to match the magnitudes
of multi-path effects observed in relevant missions [6] [37]
[34]. An example of the multi-path model on carrier phase,
projected on the unit attitude sphere, is shown in Figure 10
with a far-field object (e.g. ISS).

Figure 10: An example multi-path error model on carrier
phase, dependent on azimuth-elevation of received signal due
to near and far-field (external object) influences.
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7. NAVIGATION PERFORMANCE
Scenario 1: Rendezvous in LEO

This scenario is a simulated rendezvous and docking mission
in LEO between a chaser spacecraft and the International
Space Station (ISS) at a mean altitude of 370km and
inclination of 51.6◦. This scenario is characterized by an
environment with good geometric diversity in LEO as seen
in Figure 11, with benign thermal noise on code pseudorange
and carrier phase, but afflicted by severe multi-path on both
code and carrier due to the large reflective appendages of
the ISS, as well as the short time-visibility of tracked integer
ambiguities due to the rapidly changing geometry.

Figure 11: GPS constellation provides good geometry for
receivers in LEO but with short time-visibility of tracked
integer ambiguities, typically less than 1/3 of an orbit period.

GPS L1 measurement updates are applied in the filter at 30s
cadence, while external aiding sensors provide measurement
updates at 10s cadence. The measurement noise parameters
are tabulated in Table 3, where σρ and σϕ are the standard
deviations of code pseudorange and undifferenced carrier
phase; S is a size factor reflecting the external object’s multi-
path footprint as per equation 26.

Table 3: Measurement noise parameters in LEO

Thermal Noise Multipath
σρ σϕ S Aρ Aϕ

0.20m 2mm 5 5.0m 50mm

The GPS measurement thermal noise is derived from the link-
budget analysis in Table 5, while the multi-path parameters
were chosen to match similar order-of-magnitude effects
observed in measurement residuals of an actual rendezvous
mission with the ISS [37], in Table 3. Finally, a simplification
in the simulation is that bearing-angles are taken with
reference to the center of the Zvezda docking port, and thus a
key assumption is that bearing angles are resolvable from the
full optical image even at close range.

The initial along-track separation between the chaser and
target (ISS) is 1km. A sequence of impulsive control

maneuvers are computed open-loop via numerical targeting
[38] to bring the chaser to zero terminal relative position and
zero contact velocity with respect to the docking port.

Figure 12: Visualization in STK of the rendezvous operation
between local chaser in LEO and target ISS

Figure 13: Trajectory of chaser in RTN frame of the ISS,
origin centered at the Zvezda docking port

The relative navigation performance in the target’s RTN
frame is graphed in Figure 14. Maneuvers are indicated by
the red vertical bars. Performance under full sensor coupling
is given by the colored plots, while performance with no
sensor coupling is given by grayscale plots. In the case of
full coupling, range and bearing angle measurement updates
are made available only 30 minutes into flight.

The IAR performance is given in Figure 15 for only the
full-coupling case. As expected, under the prescribed noise
conditions in a no-coupling scenario, all SDCP ambiguities
remained unresolved and thus plots of IAR performance
under no-coupling were excluded. With full coupling,
achieving IAR becomes a real possibility due to the presence
of measurements not afflicted by high multi-path. This
allows (i) the steady-state covariances of all ÑSD to converge
sufficiently towards passing integer acceptance tests, and
(ii) potentially reducing the probability of a wrong integer
fix by considering the weighted range and bearing angle
information as an a-priori soft constraint. Furthermore,
partial resolution rather than full-batch resolution allows for a
graduation of integer fixing, aiding filter convergence further
towards a successful cascade of resolved integers as depicted
in Figure 15 (right). The time-of-first-fix is t = 371 minutes.

The steady-state relative navigation performance
(mean and standard deviation), after IAR, is 1.03 ±
4.24 cm for the relative position and 0.0525 ± 0.245
mm/s for the relative velocity, root-mean-squared.
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Figure 14: Navigation performance under under high multi-path during LEO rendezvous and docking: relative position error
in RTN throughout the campaign (top-left) and a zoomed-in plot across a 1-orbit period where IAR executes successfully
(top-right); relative velocity error in RTN throughout the campaign (bottom-left) and a similar zoomed-in plot (bottom-right).
Navigation performance without external sensor coupling is plotted in grayscale while full coupling is plotted in color.

Partial ambiguity resolution 
results in a graduation in 

integer resolution which aids 
covariance convergence, 
which in turn aids further 

ambiguity resolution

% Floats
% Bad Fixes
% Correct Fixes

Tight coupling of integers 
with a-priori external sensor 
measurements overcomes 

the noise limitations of 
performing an integer fix.

365 370 375

Figure 15: IAR percentage success (left) under high multi-path during LEO rendezvous and docking, with full sensor coupling,
and a zoomed-in plot around the time-at-first-fix at t = 371 minutes (right), illustrating the behaviour of graduated integer
resolution when resolving ambiguities in partial subsets. Note that at convergence, there is a 10% wrong fix rate.
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Scenario 2: Rendezvous and Docking in GEO

This scenario is a simulated rendezvous and docking mission
in GEO between a chaser spacecraft and a cooperative micro-
satellite with an active inter-satellite cross link. This scenario
is characterized by an environment with high thermal noise
due to the reliance on GPS sidelobe signals with extremely
low C/N0 ratio and poor geometric dilution of precision
as seen in Figure 16. The maximum half-cone angle of
the sidelobe beam is 60◦, with all GPS satellite transmitter
boresights pointing in the nadir direction.

Figure 16: GPS sidelobe-only reception provides poor
geometric dilution of precision and low C/N0, but offers a
longer window of visibility for tracked ambiguities due to
longer orbit periods of the receiver

It is assumed that the receiver sensitivity can reach 15 dB-
Hz for sidelobe reception [39], which is slightly below
the expected C/N0 ratio of the GPS L1 sidelobe signal
in GEO as tabulated in Table 5. The cadence of filter
measurement updates remains unchanged from the previous
scenario. Measurement noise parameters are tabulated in
Table 4,

Table 4: Measurement noise parameters in GEO

Thermal Noise Multipath
σρ σϕ S Aρ Aϕ

2.673m 21.274mm 1 1.0m 10mm

The GPS measurement thermal noise in Table 4 values are
derived from the link-budget analysis in Table 5. Again, it is
assumed that bearing-angles are resolvable from the optical
image, where angles are taken with reference to the center of
the GEO target’s docking port.

The initial along-track separation between the chaser and
target in GEO is 1km. A sequence of impulsive control
maneuvers are computed open-loop [38] to bring the chaser to
zero terminal relative position and zero contact velocity with
respect to the GEO target, resulting in the trajectory seen in
Figure 18.

The relative navigation performance in the target’s RTN
frame are graphed in Figure 19. Maneuvers are indicated
by the red vertical bars. From the zoomed-in plots of
Figure 19 (right), the maneuvers produce expected and abrupt

Figure 17: Visualization in STK of the rendezvous operation
in geostationary orbit

Figure 18: Trajectory of chaser in RTN frame of the GEO
target, origin centered at the docking port

relative velocity estimation errors. As per the previous
scenario, the performance under tight-coupling is given by
the colored plots with the colored covariance envelope, while
performance with no sensor coupling is given by grayscale
plots with grayed covariance envelope. In the case of full
coupling, range and bearing angle measurement updates are
made available only 30 minutes into flight. A noticeable
difference in the navigation performance between the current
GEO and the previous LEO scenario, is that the navigation
errors in the radial-axis (R) are a lot more pronounced than
the along-track (T) and normal (N) axes in the GEO case
than the LEO case, in Figures 19. This is expected since
from Figure 16, the GPS constellation geometry from a GEO
orbiter results in a much poorer local vertical dilution of
precision (VDOP) under sidelobe-only reception.

The IAR performance is given in Figure 20 for only the full-
coupling case. Once again, as expected under no-coupling,
all SDCP ambiguities remained unresolved as floats and thus
plots of IAR performance under no-coupling were excluded.
The same advantageous effects of including external aiding
measurements in both the loose and tight coupling step are
observed in the form of an accelerated IAR time-to-first-fix
as well as a graduation of integer resolution, as seen in Figure
20 (right). The time-of-first-fix in this scenario was t = 418
minutes, as seen in right-most plot of Figure 20.

The steady-state relative navigation performance
(mean and standard deviation), after IAR, is 0.79 ±
2.84 cm for the relative position and 0.0584 ± 0.182
mm/s for the relative velocity, root-mean-squared.
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Figure 19: Navigation performance under high thermal noise of GPS sidelobe-only signals in GEO rendezvous and docking:
relative position error in RTN throughout the campaign (top-left) and a zoomed-in plot across a 1-orbit period where IAR
executes successfully (top-right); relative velocity error in RTN throughout the campaign (bottom-left) and a similar zoomed-in
plot (bottom-right). Navigation performance without external sensor coupling is plotted in grayscale while full coupling is
plotted in color.

Partial ambiguity resolution results in 
a gradual fixing of integer ambiguities 

which aids covariance convergence 
and thus cascades IAR further, similar 

to the previous scenario.

Tight coupling of integers with a-priori 
external sensor measurements 

overcomes the noise limitations of 
performing an integer fix.

Figure 20: IAR percentage success (left) under the high thermal noise of GPS sidelobe-only signals in GEO, with full sensor
coupling, and a zoomed-in plot around the time-at-first-fix at t = 418 minutes (right), illustrating the behaviour of graduated
integer resolution when resolving ambiguities in partial subsets.
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8. CONCLUSION
High precision relative navigation between cooperative
agents of a Distributed Space System (DSS) can be achieved
by leveraging Carrier Phase Differential GPS (CDGPS)
measurements with the successful resolution of an ambiguous
number of wave cycles within the measurement. This is the
well-known Integer Ambiguity Resolution (IAR) problem.
Achieving IAR also enables the precise state estimation of
other environmental or dynamical parameters of interest.
Thus, IAR is crucial for high precision state estimation using
GPS/GNSS receivers in general. Yet, attaining IAR under
adverse signal noise conditions is challenging due to its high
sensitivity to noise.

This work has set out to explore methods for achieving
high precision state estimation through IAR while operating
in such adverse noise environments, using only GPS L1.
The principal innovation in this paper is the design of
an integrated three-step navigation architecture, leveraging
sensor fusion and coupling between CDGPS measurements
and external aiding sensor measurements, sourced from
common pre-existing on-board sensors. This architecture
was designed with flight-capable software, intended for
online and real-time use. A loose coupling step fuses all
measurements jointly during the measurement update step
of an efficiently designed Extended Kalman Filter. A tight
coupling step directly incorporates information from the
external sensors into IAR, by setting a soft constraint on
the objective function based on the agreement between the
integer candidates and the external sensor measurements.
Finally, float ambiguities are resolved in batches of partial
subsets for efficiency, in contrast with the more commonly
adopted full-batch resolution. These efforts culminated in
an integrated navigation architecture that couples sensor
measurements with CDGPS, follow by IAR, through a multi-
stage process, which is all packaged into a unified and flight-
capable software.

The proposed navigation architecture is validated under two
case studies with adverse noise conditions in this paper, using
state-of-the-art measurement and dynamics modelling with
the Stanford Space Rendezvous Lab’s S3 library. The first
case study is a rendezvous mission in Low Earth Orbit (LEO)
with the International Space Station, of which its reflective
structures introduces strong multi-path influences on the GPS
L1 measurements. The second case study is a rendezvous
mission in Geostationary Orbit (GEO) under high thermal
noise due to the reliance on GPS sidelobe-only signals at
GEO altitudes. High-fidelity simulation demonstrated <
5 cm relative position errors and < 0.25 mm/s relative
velocity errors at filter convergence, with at least 90% IAR
success rate. However, achieving IAR under these extremely
challenging scenarios requires a long filter convergence time
(5 hours for the first case, and 7 hours for the second
case) as seen in the flight-like results. Furthermore, wrong
integer fixes, which could be detrimental to filter navigation
performance, are still a possibility in general, and were
observed in the flight results at a ≤ 10% rate. Broadly,
the detection of falsely resolved integers remains still an
open problem in literature. These gaps therefore motivate
potential research directions forward towards both precise
and robust state estimation in a DSS. Such a direction
would also find valued use in many proximity operations
scenarios requiring high-precision, such as: autonomous
rendezvous and docking, on-orbit maintenance, relative
trajectory planning, and improved space domain awareness.
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APPENDICES
External Sensor Measurement Jacobians

Let ρ⃗(υ) = [x, y, z] be the computed relative baseline vector
in the υ-frame, and [R,α, ε] be the range and bearing angle
measurements observed, as per Figure 5. The Jacobians
(sensitivities) of the external aiding sensor measurements
with respect to the υ-frame coordinates are,

Hυ =


∂R
∂x

∂R
∂y

∂R
∂z

∂α
∂x

∂α
∂y

∂α
∂z

∂ε
∂x

∂ε
∂y

∂ε
∂z

 =


x
R

y
R

z
R

−xy
R3 cos(α)

x2+z2

R3 cos(α)
−yz

R3 cos(α)

cos2(ε)
z

0 −x cos2(ε)

z2


The Jacobians with respect to the chief and deputy positions
in the ECI frame r⃗c and r⃗d are expressed as,

HECI
c = −Hυ ·Θυ

ECI

HECI
d = Hυ ·Θυ

ECI
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Table 5: Link budget analysis and C/N0 per scenario

Parameters Units LEO GEO
Frequency MHz 1575.42 1575.42

PLL Bandwidth Hz 15.0 15.0
RX Antenna Gain dBW 33.0 33.0
RX Circuit Loss dBW -1.0 -1.0

RX Polarization Loss dBW -1.0 -1.0
GPS Antenna Gain dBW 13.5 -3.0

GPS Transmit Power dBW 14.25 14.25
GPS Transmit Loss dBW -1.25 -1.25

GPS EIRP dBW 26.5 10.0
Slant Range km 20,000 80,000

Free Space Path Loss dBW -182.419 -194.460
Atmospheric Losses dBW -0.10 -0.10

Noise Spectral Density (N0) dBW -169.919 -169.919
Carrier Signal Strength (C) dBW -124.919 -153.460

Resultant Noise
Carrier-to-Noise Ratio (C/N0) dBW 45.0 16.45
Pseudorange Thermal Noise σρ m 0.20 2.673
Carrier Phase Thermal Noise σϕ mm 2.0 21.274

Table 6: Navigation Filter Parameters

Initial Standard Deviation
Position [m] 1000.0

Velocity [m/s] 1.0
Emp. Accelerations [m/s2] [1.0, 2.0, 0.75]× 10−6

RX clock errors [m] 100.0
Ambiguities [cycles] 1000.0

External Sensor Biases 10−9m and 10−5 arcsec

Process Noise 1-Sigma
Position [m] 10−6

Velocity [m/s] 10−9

Emp. Accelerations [m/s2] [1.0, 1.0, 0.5]× 10−6

RX Clock Errors [m] 5.0
Ambiguities [cycles] 5.0

External Sensor Biases 10−9m and 10−5 arcsec

Measurement Noise 1-Sigma
Code Pseudorange [m] 1.5 (LEO), 2.65 (GEO)

Carrier Phase [mm] 15.0 (LEO), 20.0 (GEO)
External Sensors Assumed known from Table 1

Auto-Correlation Time Constants
RX Clock Errors [s] 60.0

Emp. Accelerations [s] 900.0
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