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Abstract—Reliable and efficient trajectory optimization methods
are a fundamental need for autonomous dynamical systems,
effectively enabling applications including rocket landing, hy-
personic reentry, spacecraft rendezvous, and docking. Within
such safety-critical application areas, the complexity of the
emerging trajectory optimization problems has motivated the
application of AI-based techniques to enhance the performance
of traditional approaches. However, current AI-based methods
either attempt to fully replace traditional control algorithms,
thus lacking constraint satisfaction guarantees and incurring in
expensive simulation, or aim to solely imitate the behavior of
traditional methods via supervised learning. To address these
limitations, this paper proposes the Autonomous Rendezvous
Transformer (ART)† and assesses the capability of modern gen-
erative models to solve complex trajectory optimization prob-
lems, both from a forecasting and control standpoint. Specif-
ically, this work assesses the capabilities of Transformers to
(i) learn near-optimal policies from previously collected data,
and (ii) warm-start a sequential optimizer for the solution of
non-convex optimal control problems, thus guaranteeing hard
constraint satisfaction. From a forecasting perspective, results
highlight how ART outperforms other learning-based architec-
tures at predicting known fuel-optimal trajectories. From a con-
trol perspective, empirical analyses show how policies learned
through Transformers are able to generate near-optimal warm-
starts, achieving trajectories that are (i) more fuel-efficient,
(ii) obtained in fewer sequential optimizer iterations, and (iii)
computed with an overall runtime comparable to benchmarks
based on convex optimization.
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Figure 1: This paper proposes the Autonomous Rendezvous Trans-
former (ART) for trajectory optimization. Through the combina-
tion of efficient dynamics models and the generative capability of
modern Transformer networks, the proposed framework is used to
enhance traditional sequential convex programs through learning-
based warm-starting, thus exploiting the advantages of data-driven
approaches while ensuring hard constraint satisfaction.

1. INTRODUCTION
In robotics, trajectory generation is a ubiquitous approach to
achieving reliable autonomy through the computation of a
state and control sequence that simultaneously is dynamically
feasible, satisfies constraints, and optimizes key mission ob-
jectives. For most problems of interest, the trajectory genera-
tion problem is usually non-convex, which typically leads to
formulations that are difficult to solve efficiently and reliably
on-board an autonomous vehicle. Such implications are par-
ticularly relevant for the case of spacecraft rendezvous, prox-
imity operations, and docking (RPOD), where computational
resources are forcefully limited. In light of this, the growing
interest in exploring the application of machine learning
(ML) techniques to enhance traditional trajectory generation
is mainly motivated by two reasons. First, learning-based
techniques appear as promising means to approach control
problems characterized by complex, multi-step, and possibly
highly non-convex reward metrics [1]. Second, the compu-
tational overhead of using trained ML models at inference is
low and possibly compatible with the limited computational
capabilities available on-board spacecraft [2] [3]. However,
the application of ML algorithms to the problem of spacecraft
trajectory optimization is typically limited by the need for
hard guarantees on both constraint satisfaction (e.g., dynam-
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ics feasibility, collision avoidance, path constraints) and task
performance (e.g., in presence of system faults).

Looking at the current state-of-the-art, the use of artifi-
cial intelligence (AI) for spacecraft on-board autonomy is
a relatively new research area, in particular when it comes
to exploring its advantages and feasibility of use for real
space flight missions. Currently, successful deployments
of autonomous capabilities within RPOD missions include
unmanned technology demonstrations [4][5][6] and crewed
flagship-class programs [7]. These missions and space ve-
hicles did not leverage AI and still heavily relied on deci-
sions and trajectory designs pre-approved on-the-ground, and
overall had limited ability to make on-board safety-critical
decisions autonomously. Outside of the domain of real space
flight missions, the literature exploring the use of AI for
spacecraft autonomy can be categorized in two groups. The
first group tries to learn a representation for an action policy,
value function, or reward model [8][9][10][11] by using ei-
ther reinforcement learning (RL) or supervised learning (SL)
techniques. Approaches belonging to this first group typically
lack guarantees on performance and constraint satisfaction
and are hindered by expensive simulation of high-fidelity
spacecraft dynamics (e.g., as needed in an online RL setting).
The second group uses learning-based components to warm-
start sequential optimization solvers [12][13], thus being able
to achieve hard constraint satisfaction while converging to a
local optimum in the neighborhood of the provided warm-
start. However, while the concept of warm-starting sequential
optimization solvers is appealing in principle, current ap-
proaches are typically limited in representative power (e.g.,
representation of a state and control trajectory via a fixed-
degree polynomial), thus enforcing a limit on the set of
possible applications that can be tackled.

To overcome these limitations, this paper proposes the use
of Transformers to warm-start a sequential optimizer to effi-
ciently generate near-optimal and feasible trajectories while
avoiding expensive simulation (Figure 1). Specifically, while
current approaches learn a mapping from an initial con-
dition to a full sequence of states and controls [12] [13],
Transformers cast warm-starting as a sequence prediction
problem [14] [15], thus naturally allowing for time-dependent
warm-start generation. In Section 2, this paper begins by
introducing relevant literature to contextualize the proposed
approach. In Section 3, the architecture of the Autonomous
Rendezvous Transformer (ART), associated Markov Decision
Process formulation, and inference pipeline are presented in
the context of general constrained optimal control problems.
In Section 4, the discussion is specialized to spacecraft
rendezvous, where three OCPs are introduced: one non-
convex and two associated convex relaxations. Finally, in
Section 5, experimental results are presented. These include
(i) Forecasting; i.e., the assessment of ART’s capability to
imitate known fuel-optimal trajectories, and (ii) Control; the
assessment of ART’s performance when used to warm-start
sequential convex programs.

The contribution brought by this paper to the state-of-the-art
is threefold2.

• A novel Transformer-based framework for the solution of
general non-convex optimal control problems and its applica-
tion to spacecraft rendezvous trajectory optimization.
• The investigation of architectural components and design
decisions within the proposed framework, such as the choice

2Code will be made available at the final submission.

of Transformer architecture and learning paradigm, MDP
formulation, inference strategy, and their impact on overall
performance.
• The demonstration through empirical analyses of ART’s
capability to (i) accurately forecast known fuel-optimal tra-
jectories, and (ii) generate near-optimal warm-starts for a se-
quential convex program, showing advantages both in terms
of achieved fuel optimality and computational efficiency.

2. PRELIMINARIES
This section introduces notation and theoretical foundations
underlying this work in the context of Markov decision pro-
cesses and RL, and Transformers for sequence prediction.

Markov Decision Processes and (Offline) RL

Let us consider the problem of learning to control a dynam-
ical system from experience [16]. Formally, a dynamical
system is referred to as being entirely determined by a (fully-
observed) Markov decision process M = (X ,U , f, ρ,R),
where X is a set of all possible states x ∈ X , which may be
either discrete or continuous, U is the set of possible controls
u ∈ U , also discrete or continuous, f : X × U → X
describes the dynamics of the system, ρ represents the initial
state distribution ρ(x(t1))

3, and R : X × U → R defines
the reward function. A trajectory consists of a sequence of
states and controls τ = (x(t1),u(t1), . . . ,x(tN ),u(tN )),
where N ∈ N defines the number of discrete time instants
of the MDP. The return, or reward-to-go, of a trajectory at
time ti, R(ti) =

∑N
j=i R(x(tj),u(tj)), is the sum of future

rewards from time ti. Intuitively, the goal of reinforcement
learning is to learn a policy that maximizes the expected
return E

[∑N
i=1 R(x(ti),u(ti))

]
in an MDP. Most reinforce-

ment learning algorithms follow the same basic learning loop:
the agent interacts with the MDP M by observing some
state x(ti), selecting a control u(ti), and then observing the
next state x(ti+1) together with a scalar reward feedback
R(x(ti),u(ti)). This procedure may repeat for multiple
steps, during which the agent uses the observed transitions
(x(ti),u(ti),x(ti+1),R(x(ti),u(ti))) to update its policy.
Crucially, the active exploration induced by this interaction
with the MDP is foundational for the success of the vast
majority of reinforcement learning algorithms. On the other
hand, in offline reinforcement learning, this active interaction
is precluded, and the agent is assumed to have only access to
a limited offline dataset of (potentially sub-optimal) trajecto-
ries.

Transformers for Sequence Prediction

The Transformer architecture [17] has recently achieved suc-
cess across a wide range of applications: from natural lan-
guage processing [18] and computer vision [19] to robotics
[20]. At its core, the Transformer defines an architecture to
efficiently model sequential data through its ability to process
sequences of any length in a parallel way, as opposed to the
computationally-sequential nature of e.g., recurrent neural
networks.

At a high level, a Transformer network is defined as the
composition of one or more Transformer blocks. Specifically,
given a sequence of N input embeddings (z(t1), . . . ,z(tN )),
with z(ti) ∈ Rd, a Transformer block is a sequence-to-

3Throughout this work, we write x(ti) to denote state x at time ti ∈ R>0,
with i ∈ N, i ∈ [1, N ], e.g., x(t1) is the state at time t1.
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Figure 2: The Autonomous Rendezvous Transformer (ART) architecture. Each reward-to-go, constraint-to-go, state, and control vector is
fed into modality-specific linear encoders, after which a positional encoding is added. The embeddings are processed by a GPT architecture
which predicts future states and controls autoregressively.

sequence, dimensionality-preserving function i.e., mapping
Rd×N to Rd×N . The core component of a Transformer block
is the self-attention layer, for which the i-th embedding z(ti)

is mapped via linear transformations to a key ki ∈ Rd, query
qi ∈ Rd, and value vi ∈ Rd vectors. The i-th output of the
self-attention layer is given by weighting the values vj by the
normalized dot product between the query qi and other keys
kj , as

z(ti) =

N∑
j=1

softmax
(
{⟨qi,kj′⟩}Nj′=1

)
j
· vj , (1)

where ⟨·, ·⟩ : Rd × Rd → R represents the dot product
between two vectors, {·}Nj=1 is the concatenation of elements
from j = 1 through N , and the softmax function is applied
to an N -dimensional input vector rescaling it so that the
elements of the N -dimensional output vector lie in the range
[0, 1] and sum to 1. Intuitively, this allows the layer to assign
credit, or "attend", to specific values by forming associations
via similarity (i.e., large dot product) of the query and key
vectors4. Particularly relevant for this work is the GPT
architecture [22], which modifies Eq. (1) with a causal self-
attention mask such that elements in the sequence cannot
attend to future elements in the sequence, thus respecting the
temporal, or causal, structure in the sequence. Concretely,
this is achieved by replacing the summation and softmax
function over N with only the previous elements in the
sequence (j ∈ [1, i]).

3. SOLVING CONSTRAINED OPTIMAL
CONTROL PROBLEMS USING

TRANFORMERS
Let us consider the generic time-discretized non-convex con-
strained OCP

minimize
u(ti),x(ti)

N∑
i=1

J (x(ti),u(ti))

subject to x(ti+1) = f (x(ti),u(ti)) ∀i ∈ [1, N ]

x(ti),u(ti) ∈ C(ti) ∀i ∈ [1, N ],

(2)

where x ∈ Rs is the state, u ∈ Ra is the control action,
f : Rs+a → Rs is the non-linear dynamics, C is generic state
and action constraint set, and N ∈ N defines the number of
considered discrete time instants over the full OCP horizon.

4For a broader treatment of the Transformer architecture, the reader is
referred to [21]

Trajectory Representation

In order to achieve desirable trajectory generation behavior,
the choice of trajectory representation should enable Trans-
formers to (i) learn meaningful time-dependent patterns, and
(ii) conditionally generate trajectories based on user-defined
performance parameters. Concretely, we define the following
representation:

τ = (P(t1),x(t1),u(t1), . . . ,P(tN ),x(tN ),u(tN )) , (3)

where P is the set of trajectory performance parameters. In
particular, in this work, we consider two trajectory perfor-
mance parameters: the reward-to-go metric R ∈ R, directly
linked to the OCP cost function as

R(ti) =

N∑
j=i

R(x(tj),u(tj)) = −
N∑
j=i

J(x(tj),u(tj)), (4)

and the constraint-to-go metric C ∈ N, directly linked to the
OCP constraint set as

C(ti) =

N∑
j=i

C(tj), (5)

where C(tj) checks for constraint violation as

C(tj) =

{
1, if ∃x(tj),u(tj) /∈ C(tj)
0, otherwise, (6)

thus allowing the Transformer to generate trajectories based
on future desired returns and constraint violations. Specif-
ically, through such a representation, the user is able to
specify a desired performance at inference (i.e., reward-to-
go R(t1) and constraint-to-go C(t1)), as well as the initial
state x(t1), to initiate the sequential generation of the trained
Transformer.

Autonomous Rendezvous Transformer Architecture

Given an input trajectory represented as in Eq.(3) and a pre-
specified maximum context length K, ART receives the last
K timesteps, for a total of 4K sequence elements, one for
each modality: reward-to-go, constraint-to-go, state, and con-
trol. To obtain a sequence of 4K embeddings, each element is
projected through a modality-specific linear transformation,
or encoder, to the embedding dimension. Moreover, as in
[14], an embedding for each timestep is learned and added
to each element embedding. The resulting sequence of em-
beddings is then processed by a GPT model, which predicts
future states and controls through autoregressive generation.
Figure 2 provides a schematic illustration.
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Training

Given an offline dataset of trajectories obtained through the
solution of Problem (2), the first step is to reorganize the
trajectories to be consistent with the representation in Eq. (3)
in order to obtain a dataset amenable for Transformer training
of the form: P1(t1) x1(t1) u1(t1) . . . P1(tN ) x1(tN ) u1(tN )

...
...

...
...

...
...

PNd(t1) xNd(t1) uNd(t1) . . . PNd(tN ) xNd(tN ) uNd(tN )

 , (7)

where each row represents a trajectory, Nd ∈ N is the number
of data trajectories, and P = {R,C}. Training is performed
with the teacher-forcing procedure [23], as usually done to
train sequence models. Specifically, denoting the parameters
of ART as θ and || · ||2 as the L2-norm, ART is trained via the
minimization of the following squared-error loss function:

L(τ) =
Nd∑
n=1

N∑
i=1

(
||xn(ti)− x̂n(ti)||22 + ||un(ti)− ûn(ti)||22

)
x̂n(ti) = ARTθ

(
τn<ti

)
ûn(ti) = ARTθ

(
τn<ti ,x

n(ti)
)
,

(8)
where ARTθ(·) denotes one-step prediction via ART, τ<ti
represents a trajectory from timesteps 1 through i − 1, and
x̂(ti), û(ti) define a predicted state and control, respectively.

Trajectory Generation Approaches

Once trained, ART can be used to generate any element of
the trajectory given the context composed by the previous
elements in the sequence. Therefore, ART can be used to
generate both future actions (i.e., as a controller), future
states (i.e., as an approximate dynamics model), and even,
in principle, the associated performance parameters (e.g.,
approximate future reward, i.e., value function). This work
investigates the capability of ART to infer good actions,
which, when applied in the dynamics of the system, produce
a dynamically feasible, high-performance trajectory. Specif-
ically, given an inferred control û(t), this work investigates
two approaches to compute future states: (i) trasformer-only,
and (ii) dynamics-in-the-loop. The former directly infers
states through the Transformer, while the latter directly uses
the known dynamics f (x(t), û(t)). If on one hand generat-
ing the next state through f (·) enforces dynamics feasibility
by construction, using the Transformer gives no guarantee
of constraint satisfaction. In both cases, after executing the
generated control for the current state, the proposed inference
strategy (i) decreases the reward-to-go R(t) by the instanta-
neous reward (negative cost), (ii) decreases the constraint-to-
go C(t) by the instantaneous constraint violation C(t), and
(iii) repeats until the horizon is reached.

The investigated inference pipelines are described in Algo-
rithms 1 and 2, and represented graphically in Figure 1.

Practical Considerations

The input parameters of Algorithms 1 and 2 are fundamen-
tally three: (i) the initial state x(t1) which is fixed by the
problem scenario, (ii) the initial reward-to-go R(t1), which
quantifies the expected optimality level (negative total cost)
to be achieved by the generated trajectory, and (iii) the
initial constraint-to-go C(t1), which quantifies the expected
feasibility level (costraint satisfaction) to be achieved by the
generated trajectory. R(t1) and C(t1) are design parameters
that can be used to condition the trajectory generation. In this
work, we propose to select R(t1) as a (negative) quantifiable

Algorithm 1: ART inference - Transformer-only
Input: R(t1), C(t1),x(t1)
Output: x(ti), û(ti), ∀i ∈ [1, N ]
Data: ART(.)

1 begin
2 x̂(t1) = x(t1)
3 ctxu(t1) = {R(t1), C(t1), x̂(t1)}
4 for i = 1 to N do
5 û(ti) = ART (ctxu(ti))
6 if i < N then
7 R(ti+1) = R(ti)− (−J (x̂(ti), û(ti)))
8 if x̂(ti), û(ti) /∈ C(ti) then
9 C(ti) = 1

10 else
11 C(ti) = 0
12 C(ti+1) = C(ti)− C(ti)
13 ctxx(ti+1) = {R(tj), C(tj), x̂(tk), û(tk)},

∀j ∈ [1, i+ 1], ∀k ∈ [1, i]
14 x̂(ti+1) = ART (ctxx(ti+1))
15 ctxu(ti+1) = {R(tj), C(tj), x̂(tj), û(tk)},

∀j ∈ [1, i+ 1], ∀k ∈ [1, i]
16 x(ti+1) = f (x(ti), û(ti))
17 return x(ti), û(ti), ∀i ∈ [1, N ]

Algorithm 2: ART inference - Dynamics-in-the-loop
Input: R(t1), C(t1),x(t1)
Output: x(ti), û(ti), ∀i ∈ [1, N ]
Data: ART(.)

1 begin
2 ctxu(t1) = {R(t1), C(t1),x(t1)}
3 for i = 1 to N do
4 û(ti) = ART (ctxu(ti))
5 if i < N then
6 R(ti+1) = R(ti)− (−J (x(ti), û(ti)))
7 if x(ti), û(ti) /∈ C(ti) then
8 C(ti) = 1
9 else

10 C(ti) = 0
11 C(ti+1) = C(ti)− C(ti)
12 x(ti+1) = f (x(ti), û(ti))
13 ctxu(ti+1) = {R(tj), C(tj),x(tj), û(tk)},

∀j ∈ [1, i+ 1], ∀k ∈ [1, i]
14 return x(ti), û(ti), ∀i ∈ [1, N ]

lower bound of the optimal cost and C(t1) = 0 to condition
the generation of near-optimal and feasible trajectories.

4. APPLICATION TO SPACECRAFT
RENDEZVOUS

In the considered scenario, a servicer spacecraft has to ren-
dezvous and dock with a target spacecraft or target space
station. The target lies on an absolute reference orbit uniquely
defined by a set of orbital elements (OE): œ ∈ R6. Let
us use the quasi non-singular OE definition [24]: œ =
{a, ν, ex, ey, i,Ω}, with a the semi-major axis, ν = M + ω
the mean argument of latitude, M the mean anomaly, ω
the argument of periapsis, {ex, ey} = {e cos(ω), e sin(ω)}
the eccentricity vector, e the eccentricity, i the inclination,
and Ω the right ascension of the ascending node. The
relative orbital motion of the servicer with respect to the
target can be expressed equivalently using a relative Carte-
sian state, or using Relative Orbital Elements (ROE) which
are nonlinear combinations of the OE of the servicer and
the target and equivalent to the integration constants of the
linearized equations of relative orbital motion [6][25]. The
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relative Cartesian state is expressed in the Radial Tangen-
tial Normal (RTN) reference frame centered on the target,
and is defined as: δχ = {δr, δv} ∈ R6 where δr =
{δrr, δrt, δrn} ∈ R3 is the relative position and δv =
{δvr, δvt, δvn} ∈ R3 is the relative velocity. The quasi-
nonsingular ROE state [6] is a nonlinear combination of the
OE of the servicer (noted with subscript s) and the target
as: δœ = {δa, δλ, δex, δey, δix, δiy} ∈ R6, where δa =
(as − a)/a is the relative semi-major axis, δλ = νs − ν +
(Ωs − Ω) cos(i) the relative mean longitude, {δex, δey} =
δe{cos(φ), sin(φ)} = {es cos(ωs) − e cos(ω), es sin(ωs) −
e cos(ω)} the relative eccentricity vector, and {δix, δiy} =
δi{cos(ϕ), sin(ϕ)} = {is − i, (Ωs − Ω) sin(i)} the relative
inclination vector. The relative Cartesian and ROE state have
a first-order one-to-one mapping

δχ(t) ≈ Ψ(t)δœ(t), (9)

with Ψ ∈ R6×6 defined in [6][26][27] for both near-circular
and eccentric orbits.

The nonintegrable perturbed and controlled time-discretized
relative orbital dynamics of the servicer with respect to the
target can be expressed favorably on the ROE state using
variation of parameters [24] as

δœ(ti+1) = Φ(δt, ti)δœ(ti) +Φ(δt, ti)B(ti)∆v(ti), (10)

where Φ ∈ R6×6 is a state transition matrix including
a variety of orbital perturbations relevant in different orbit
scenarios [28][29][30], B ∈ R6×3 is the control input matrix
defined in [31][32] for both near-circular and eccentric orbits,
and ∆v ∈ R3 is delta-velocity applied by the servicer.

In the rendezvous scenario, some constraints are more natu-
rally formulated on the relative Cartesian state (e.g., terminal
docking conditions and waypoints, approach cones, etc.)
[33][34][35], whereas others are more advantageously for-
mulated on the ROE state (e.g., perturbed orbital dynamics,
passive safety conditions and waypoints, etc.) [28][36][27].
At small spacecraft separation, the defined first-order linear
map Ψ allows to accurately map constraints from one state
representation to the other while retaining their possible
convexity. In the following, given the dynamics models used,
we employ a ROE representation in the formalization of the
optimal control problems.

Optimal Control Problems

In this paper, we apply the proposed modeling framework
to three optimal control problems (OCPs) of relevance for
the considered rendezvous scenario. These are: (1) a con-
vex two-point-boundary-value-problem (TPBVP) between an
initial and final condition, (2) a convex rendezvous problem
including a pre-docking waypoint and an approach cone con-
straint, and (3) a non-convex rendezvous problem including
also a keep-out-zone constraint around the target. While
the first two problems can be solved directly using convex
optimization tools [37], the latter requires the formalization
of a Sequential Convex Program (SCP) [38] [39] [35]. In
the remainder of the paper, the capability of ART to generate
effective warm-starting trajectories for this SCP is assessed
and benchmarked against the performances obtained by using
the solutions of the convex problems as warm-starts.

Problem 1: Two Point Boundary Value Problem—The time-
discretized fuel-optimal two-point-boundary-value-problem

is formalized as

minimize
∆v(ti),δœ(ti)

N∑
i=1

||∆v(ti)||2

subject to δœ(ti+1) = Φ(δt, ti)δœ(ti) +Φ(δt, ti)B(ti)∆v(ti) ∀i ∈ [1, N ]

δœ(t1) ≡ state estimate
δœ(tN+1) ≡ terminal guidance,

(11)
The initial condition is the most updated state estimate pro-
vided by the navigation filter and can represent (as in the next
section) an initial passively safe trajectory around the target.
The terminal condition is provided by the on-board guidance
and can represent either a relative orbit correction, a reconfig-
uration way-point, or (as in the next section) a docking port.
To minimize fuel consumption, the minimization of the sum
of the L2-norms of the applied ∆v is sought.

Problem 2: Convex Rendezvous Problem— The time-
discretized fuel-optimal convex rendezvous problem is for-
malized as

minimize
∆v(ti),δœ(ti)

N∑
i=1

||∆v(ti)||2

subject to δœ(ti+1) = Φ(δt, ti)δœ(ti) +Φ(δt, ti)B(ti)∆v(ti) ∀i ∈ [1, N ]

δœ(t1) ≡ initial passively safe relative orbit
Ψ(tNw.p.

)δœ(tNw.p.
) = {δrw.p.,03×1}

||Aa.c.(ti)δœ(ti) + ba.c.||2 ≤ cTa.c.(ti)δœ(ti) + da.c. ∀i ∈ [Nw.p., N ]

Ψ(tN+1)δœ(tN+1) = {δrd.p.,03×1},
(12)

which includes a zero relative velocity pre-docking waypoint
δrw.p. at instant tNw.p. ∈ R>0, Nw.p. ∈ N, and an approach
cone (a.c.) constraint with approach axis na.c. ∈ R3 and
aperture angle γa.c. ∈ R towards the docking port located
at RTN coordinates δrd.p.. In particular, the approach cone
is a second-order-cone constraint with parameter matrices
defined as

Aa.c.(ti) = DΨ(ti) ∈ R3×6

ba.c. = −δrd.p. ∈ R3

cTa.c.(ti) = nT
a.c.DΨ(ti)/ cos(γa.c.) ∈ R6

da.c. = −nT
a.c.δrd.p./ cos(γa.c.) ∈ R,

(13)

where D = [I3×3,03×3] ∈ R3×6 selects the position
components in the relative Cartesian state.

Problem 3: Non-Convex Rendezvous Problem— The time
discretized fuel-optimal non-convex rendezvous problem is
formalized as

minimize
∆v(ti),δœ(ti)

N∑
i=1

||∆v(ti)||2

subject to δœ(ti+1) = Φ(δt, ti)δœ(ti) +Φ(δt, ti)B(ti)∆v(ti) ∀i ∈ [1, N ]

δœ(t1) ≡ initial passively safe relative orbit

δœT (ti)Ψ
T (ti)E

T
kozEkozΨ(ti)δœ(ti) ≥ 1 ∀i ∈ [1, Nw.p.]

Ψ(tNw.p.
)δœ(tNw.p.

) = {δrw.p.,03×1}
||Aa.c.(ti)δœ(ti) + ba.c.||2 ≤ cTa.c.(ti)δœ(ti) + da.c. ∀i ∈ [Nw.p., N ]

Ψ(tN+1)δœ(tN+1) = {δrd.p.,03×1},
(14)

where Ekoz = [Diag{1/rr,koz, 1/rt,koz, 1/rn,koz},03×3] ∈
R3×6 sizes the keep-out-zone ellipsoid around the target, with
r.,koz ∈ R>0 the principal semi-axes.

Sequential Optimization

To solve the OCP in Eq. (14) using convex optimization
tools [37], the non-convex keep-out-zone constraint has to be
sequentially linearized using a SCP approach [38] [39] [35].
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In particular, at iteration kth of the SCP loop, the non-convex
constraint is linearized around a reference trajectory δœ̄k, as

aT
koz(ti)δœk(ti) ≥ bkoz(ti) ∀i ∈ [1, Nw.p.], (15)

with

aT
koz(ti) = δœ̄T

k (ti)Ψ
T (ti)E

T
kozEkozΨ(ti) ∈ R6

bkoz(ti) =

√
δœ̄T

k (ti)Ψ
T (ti)E

T
kozEkozΨ(ti)δœ̄k(ti) ∈ R>0.

(16)

Eq. (15) is a sufficient condition for the satisfaction of
the non-convex keep-out-zone constraint [40]. Moreover, to
avoid phenomena as artificial unboundedness [35], Eq. (15)
has to be complemented with the second-order-cone trust
region constraint

||δœk(ti)− δœ̄k(ti)||2 ≤ ζk ∀i ∈ [1, Nw.p.] (17)

where ζk ∈ R>0 is the trust region radius. This radius
around the reference trajectory has to be sequentially updated
by looking at the error committed in linearizing the non-
convex part of the problem (in this case just the keep-out-
zone constraint). In particular, as suggested in [35] [41],
if the linearization error is greater than a threshold, the
trust region is shrunk to not overstep the linearized model,
whereas if it is lower than a threshold, the trust region can be
enlarged to allow for greater exploration around the accurate
linearized model. This exploration phase is usually limited to
a predefined maximum number of iterations, after which, at
convergence, when the linearization error tends naturally to
zero, the trust region is shrunk using an exponential update
rule [35]. Note that, the longer the exploration phase the
lesser the impact of the initial warm-starting trajectory. In this
paper, the focus is on assessing the impact of the initial warm-
starting trajectory on the SCP convergence performances,
and as such, we focus on SCP formulations that limit the
exploration to a closer neighborhood of the initial warm-start.
Concretely, this is achieved by implementing an exponential
shrink factor [40] to the trust region since the initial iterations
as

ζk+1 =

(
ζK
ζ1

) 1
K

ζk, (18)

where K ∈ N is the maximum number of allowed SCP loop
iterations, and ζ1 and ζK are the user-defined initial (maxi-
mum) and final (minimum) trust region radii. Lastly, denoting
the optimal cost of the linearized OCP at SCP iteration kth as
Jk =

∑N
i=1 ||∆vk(ti)||2, the stopping criterion implemented

for the SCP is represented by the following logical condition

(k = K) ∨ ((ζk ≤ ζK) ∧ (Jk−1 − Jk < Jtol)) , (19)

with Jtol ∈ R>0 a defined tolerance on cost convergence.

Autonomous Rendezvous MDP

After having introduced three optimal control problems for
the considered rendezvous scenario (Problems 1-3), together
with a sequential optimization formulation to solve the non-
convex problem (Problem 3), this section focuses on ex-
plicitly defining the elements of the MDP formulation that
enables the Transformer training. Specifically, the MDP
formulation presented in Section 3 can be directly applied to
the considered rendezvous scenario. The elements describing
the MDP for the case of autonomous rendezvous are defined
as follows:

State Space (X ): can be expressed using either the relative
Cartesian or the ROE state x(ti) : {δχ(ti) ∨ δœ(ti)} ∈ R6.

Action Space (U): the applied delta-velocity u(ti) :
∆v(ti) ∈ R3.

Dynamics (f ): the time-discretize dynamics transition is
presented in Eq. (10) [28]-[32].

Initial State Distribution (ρ): the initial state distribution
represents a set of passively safe relative orbits around the
target outside the keep-out-zone ellipsoid, designed using
relative eccentricity/inclination vectors separation [36].

Reward (R): in line with the OCP formulations defined
in Section 4, the reward function is defined as the nega-
tive cost function, defined as the L2-norm of the control
R(x(t),u(t)) = −||∆v(t)||2. Equivalently, the reward-
to-go is formulated using Eq. (4) and the cost function
definition, as

R(ti) = −
N∑
j=i

||∆v(tj)||2 (20)

Constraint-to-go (C): the constraint-to-go is formulated us-
ing Eq. (5), where C(tj) is defined as

C(tj) =

{
1, if δœT (tj)Ψ

T (tj)E
T
kozEkozΨ(tj)δœ(tj) < 1

0, otherwise
(21)

and checks, by design, for non-convex constraint violation.

5. NUMERICAL RESULTS
In this section, we consider a rendezvous scenario of a
servicer with the International Space Station. The orbit,
OCPs, and SCP constant parameters are reported in Table
1 (first three columns). In order to generate a dataset of
OCP solutions amenable for Transformer training, both the
relative orbit initial conditions and the OCP control horizon
are randomized within the domains specified in Table 1 (last
column). Note that, while randomized, the initial relative
orbital condition is enforced to be passively safe according
to relative eccentricity and inclination vector separation [36].
The total dataset is comprised of 400,000 samples, which
we partition according to a 90-10% train-test split, i.e., ART
is trained on 90% of the data, while the remaining 10% is
used to generate the analyses in the remainder of this work.
Dataset trajectories contain solutions of the non-convex prob-
lem (Problem 3) as well as solutions of the most immediate
convex relaxation (Problem 2). For dataset generation pur-
poses such convex relaxation is used as a warm-start for the
solution of the non-convex problem. The reader is referred to
the Appendix for the specification of ART’s hyperparameters.

Part I: Forecasting

In this first experiment, we assess ART’s performance from a
forecasting perspective. Specifically, the goal of this section
is to answer the following questions: (1) are Transformers
capable of imitating fuel-optimal trajectories in terms of con-
trol profile and predicted states, over long planning horizons?,
(2) can we leverage knowledge of the dynamics to improve
the performance of black-box Transformer networks?, and
(3) computationally, what is the cost of ART compared to
both optimization and ML-based approaches for the purpose
of trajectory generation?

Results in Tables 2 and 3 measure the forecasting error be-
tween the "True" fuel-optimal trajectory (i.e., trajectories ob-
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Table 1: Simulation parameters.

Target orbit OCP SCP Dataset generation
a (km) RE + 416 N (-) 100 K (-) 20 Nd 400,000
e (-) 5.58e-4 wiss (m) 108 ζ1 (m) 200 Train split (%) 90
i (deg) 51.64 liss (m) 74 ζK (m) 1 Test split (%) 10
Ω (deg) 301.04 hiss (m) 45 Jtol (m/s) 1e-6 OCP horizon (orbits) [1, 3]
ω (deg) 26.18 δrd.p. (m) {0, liss, 0} Initial relative orbit:

M(t1) (deg) 68.23 na.c. (m) {0, 1, 0} aδa (m) [−5, 5]

period (h) 1.548 γa.c. (deg) 30 aδλ (m) [−100, 100]
δrw.p. (m) δrd.p. + 30na.c. aδe (m) rr,koz + [5, 30]
Nw.p. (-) N − 10 aδi (m) rn,koz + [5, 30]
rr,koz (m) hiss + 15 φ (deg) 90 + [−5, 5]

rt,koz (m) liss + 20 ϕ (deg) 90 + [−5, 5]
rn,koz (m) wiss + 15

Table 2: Forecasting Performance on Two Point Boundary Value Problem Dataset

Transformer-only Dynamics-in-the-loop True
Metric GRU LSTM ART GRU LSTM ART

Trajectory
(RMSE)

RTN Pos. [m] 1221.50 185.95 140.83 33.14 37.38 15.99 -
RTN Vel. [mm/s] 350.33 128.89 134.39 16.12 15.60 10.23 -
ROE [m] 880.77 122.73 85.69 21.49 24.84 14.95 -

Target
(RMSE)

RTN Pos. [m] 3473.70 334.33 202.05 17.69 30.29 19.43 -
RTN Vel. [mm/s] 730.30 190.08 198.67 11.49 13.18 6.90 -
ROE [m] 2466.42 225.08 120.33 15.47 27.34 16.10 -

Cost
∑

||∆v||2 [mm/s] 396.69 261.52 241.00 267.66 260.79 226.14 220.25
Impulse Accuracy [%] 22.0 14.4 10.2 82.8 86.0 86.0 -
Control Error (RMSE) [mm/s] 45.6 43.2 38.8 25.7 22.5 13.6 -
Comp. Time [s] 0.61 0.71 0.90 0.35 0.41 0.44 0.28

tained by solving either Problem 1 or Problem 3, respectively)
and the one predicted by different learning-based methods,
across different metrics. Experiments compare ART with
Gated Recurrent Unit (GRU) networks and Long Short-Term
Memory (LSTM) networks: two popular recurrent neural
network (RNN) architectures. In addition to different ML
architectures, this experiment also benchmarks the perfor-
mance of the two trajectory generation strategies introduced
in Algorithms 1 and 2. In both experiments, forecasting per-
formance is evaluated with respect to (i) state deviation along
the entire trajectory, in both RTN and ROE representations,
(ii) target (i.e., terminal) state deviation, in both RTN and
ROE representations, (iii) overall cost and deviation of the
predicted control profile, and (iv) computation time to gen-
erate a full open-loop trajectory. Specifically, Table 2 shows
results evaluated on the Two Point Boundary Value Problem
(Section 4, Problem 1), while Table 3 focuses on the Non-
Convex Rendezvous Problem (Section 4, Problem 3), thus
quantifying prediction performance on imitating trajectories
computed through the solution of both a convex and non-
convex problem, respectively. Results measure the following
performance metrics averaged over the entire test set (i.e.,
≈ 20, 000 trajectories):

1. Trajectory (RMSE): root-mean-squared-error evaluated
over the states of the entire trajectory.
2. Target (RMSE): root-mean-squared-error evaluated be-
tween the target condition and the final state in the predicted
trajectory.
3. Cost: total cost obtained by the trajectory.
4. Impulse accuracy: measures the temporal accuracy of the
predicted controls with respect to the control profile of the
ground-truth trajectory. Concretely, an accuracy of 100%

represents a situation for which whenever "true" applies a
∆v(ti) > 0 at instant ti, the predicted trajectory also applies
∆v(ti) > 0 at instant ti.
5. Control Error (RMSE): root-mean-squared-error between
"true" and predicted ∆v(ti).
6. Computation Time: runtime to generate a full trajectory.

Results in both tables show that ART is able to consis-
tently outperform other learning-based approaches across all
performance metrics and across both inference strategies
(i.e., "transformer-only" and "dynamics-in-the-loop"). Inter-
estingly, the results show a substantial benefit in leverag-
ing knowledge of the dynamics, with predictions computed
under dynamics-in-the-loop inference clearly outperforming
the ones computed using Transformers as an approximate
dynamics model. Crucially, the ability to propagate states and
achieve dynamically feasible trajectories substantially im-
proves the ability of Transformers to imitate optimal control
profiles, as observable in the Impulse accuracy and Control
Error metrics, with an improvement of ≈ 60% in accuracy,
on average (Table 2). Furthermore, consistently with ART’s
accurate control profile, the proposed ART-dynamics-in-the-
loop strategy is able to substantially outperform other ap-
proaches with respect to the overall Cost, even in those cases
where the pure state prediction performance is comparable to
alternatives, as in Table 3. Computationally, results show how
all learning-based approaches are typically more expensive
when compared to the solution of a convex program (Table
2). This order is reversed for the non-convex case, with ART
trajectory generation being approximately five times faster
compared to the solution of the SCP (Table 3). Results also
show how the use of the dynamics achieves faster trajectory
generation, thus further highlighting the benefits of the infer-
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Table 3: Forecasting Performance on Non-Convex Rendezvous Problem Dataset

Transformer-only Dynamics-in-the-loop True
Metric GRU LSTM ART GRU LSTM ART

Trajectory
(RMSE)

RTN Pos. [m] 82.19 31.05 25.02 18.62 17.69 17.94 -
RTN Vel. [mm/s] 116.24 17.30 15.08 14.01 13.03 12.35 -
ROE [m] 48.28 22.62 17.17 14.74 13.42 13.18 -

Target
(RMSE)

RTN Pos. [m] 280.04 59.52 34.90 19.59 16.59 16.83 -
RTN Vel. [mm/s] 83.52 26.75 14.81 31.18 27.82 20.65 -
ROE [m] 117.76 46.34 25.31 34.33 29.32 25.56 -

Cost
∑

||∆v||2 [mm/s] 362.42 254.76 249.62 294.95 284.37 257.28 241.34
Comp. Time [s] 0.61 0.71 0.90 0.35 0.41 0.44 2.21

Figure 3: Constraint violations (top) and costs (bottom) realized
by ART-predicted trajectories when conditioned on desired (user-
specified) performance parameters.

ence strategy depicted in Algorithm 2.

Predicting Future Performance Parameters

As a further experiment, Figure 3 evaluates the ability of
ART to model trajectory performance parameters. The results
show the constraint violation (top), and cost (bottom, ex-
pressed as negative reward-to-go) achieved by the trajectories
predicted by ART for varying values of desired constraint-
to-go and reward-to-go, respectively. Specifically, Figure 3
shows the alignment between the user-specified performance
parameter (x-axis) and the actual value achieved when ex-
ecuting the respective trajectory predicted by ART (y-axis),
on test data. In both analyses, the desired and realized
performance parameters are highly correlated, especially if
the desired parameter lies in the range of values available
in the dataset (i.e., the entire x-axis for the constraint-to-go
and the yellow-shaded region for the reward-to-go). As a
result, these plots highlight how, once trained, ART is able to
replicate specific configurations of the performance param-
eter reliably, thus enabling a novel degree of control over
the output of learning-based components. Finally, looking
at the discrepancy between the blue dots and the ideal trend
(black dashed line) in Figure 3 on the top, it is relevant to
emphasize that ART trajectory generation does not provide
hard guarantees of constraint satisfaction. Such guarantees
can be retrieved by using the trajectory generated by ART as
a warm-start for a sequential convex program.

Part II: Control

After having assessed ART’s performance from a forecasting
standpoint, this section focuses on analyzing the ability of
Transformers to generate effective SCP warm-starts for solv-
ing the non-convex rendezvous OCP (Problem 3, in Section
4). In particular, as a form of comparison, we warm-start the
SCP using: (i) a trajectory obtained solving the convex two-
point-boundary-value-problem from the initial condition to
the docking port (Problem 1, labeled as "CVX-TPBVP"), (ii)
a trajectory obtained solving the convex rendezvous problem
which does not enforce the keep-out-zone constraint (Prob-
lem 2, labeled as "CVX"), and (iii) a trajectory generated
by ART using Algorithm 2. As discussed in Section 3,
to initialize Algorithm 2 we set the performance parameter
R(t1) to the negative total cost of the "CVX" solution and
C(t1) = 0.

Figures 4-6 assess the following performance metrics: (i)
the achieved optimality level, (ii) the number of iterations
required for the SCP to converge (given the stopping criteria
defined in Eq. (19)), (iii) the associated runtime (broken
down in time needed to compute the warm-start and time
needed for running the SCP), and (iv) the unfeasibility rate
of the SCP (where a given problem instance is deemed to
be unfeasible if the convex solver [37] is unable to find any
feasible optimal solution through all SCP iterations). These
metrics are presented as a function of the initial constraint-
to-go observed for the convex rendezvous problem solution
CCVX(t1), which represents a direct metric of the difficulty
of the considered SCP warm-starting scenario. Specifically,
scenarios where CCVX(t1) = 0 represent OCPs for which
a convex solution non-violating the keep-out-zone constraint
already exists, and the associated global optimum is given
by the cost of this convex solution. Whereas, scenarios
where CCVX(t1) >> 0 represent OCPs for which the
closest convex relaxation is highly unfeasible and where the
selection of a higher-quality initial warm-start can have a
greater impact on SCP performance. Within the considered
test dataset, approximately half of the trajectories correspond
to a scenario for which CCVX(t1) > 0. In Figures 4-6, the
grey dashed line presents the amount of test data samples for
which CCVX(t1) is greater than the value reported on the x-
axis. The displayed performance metrics are average values
over the number of test samples indicated by this grey dashed
line.

Figure 4 presents the optimality metric results. On the left,
the sub-optimality gap of the SCP solutions with respect
to the lower-bounding global optimum of the convex ren-
dezvous problem is presented for the three considered warm-
starting cases. On the right, the corresponding percentage
improvement brought by using ART’s trajectory as a warm-
start is presented. In particular, ART warm-start introduces an
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Figure 4: Control cost comparison. (Left) Absolute sub-optimality gap of different SCP solutions with respect to the convex lower bound.
(Right) Percentage improvement brought by ART with respect to the two convex relaxations considered in this work.

Figure 5: SCP iterations comparison. (Left) The number of iterations required to obtain SCP convergence. (Right) Cost convergence across
SCP iterations.

Figure 6: (Left) Runtime comparison. (Right) SCP unfeasibility rate.

average improvement of more than 20% for all CCVX(t1) >
0 values, meaning that, on average, Transformer-generated
warm-starts lead the SCP to converge to more fuel-efficient
trajectories. Moreover, looking at the range CCVX(t1) ∈
[30, 40], the percentage improvement brought by ART is up
to 80% with respect to the "CVX" warm-start, and up to
≈ 90% with respect to the "CVX-TPBVP" warm-start. This
CCVX(t1) range represents scenarios for which the keep-out-
zone constraint was violated for up to 40% of the time steps
by the "CVX" solution. This shows how ART is capable
of outperforming the convex benchmarks, especially in the
most challenging warm-starting scenarios, where even the
most immediate convex relaxation is far from being a feasible
solution for the non-convex OCP. Note that the decreasing
behavior of ART performance for CCVX(t1) > 40 may be
attributed to the lower number of test samples available for
computing the average performance metric.

As a further analysis, Figure 5 focuses on the iterations re-
quired for SCP convergence. On the left, the average number
of required iterations is presented for the three considered
warm-starts. Results show how ART-generated warm-starts
require on average a lower number of iterations for SCP
convergence with respect to the convex benchmarks. This
up to ≈ 1.5 iterations in the range CCVX(t1) ∈ [30, 40].
On the right, the convergence of the cost throughout the SCP
iterations is analyzed, and presented as a percentage achieve-
ment of the lower-bounding global optimum of the convex
rendezvous problem (for CCVX(t1) > 1). In particular,
consistently with the results presented in Figure 4 and Figure
5 on the left, ART warm-start fosters convergence to a more
fuel-efficient trajectory in fewer SCP iterations.

To further assess the computational cost of different methods,
Figure 6 (on the left) analyzes the average required runtime5

broken down in (i) time needed to compute the warm-start
(dot-dashed lines, "WS"), (ii) time needed for running the
SCP (dashed-lines, "SCP"), and (iii) total time (continuous
lines, "Tot = WS + SCP"), for the three considered warm-
starts. ART trajectory inference (Algorithm 2) takes an
average ≈ 0.5s, whereas solving the convex optimization
problems takes an average ≈ 0.15s. The higher computa-
tional overhead in generating the warm-start using ART is
expected, given the high computational efficiency of solving
convex optimization problems via off-the-shelf solvers [37].
Nevertheless, the gain in SCP iterations brought by ART
(Figure 5) is reflected in the runtime required for solving
the SCP, which is up to 1s faster for CCVX(t1) ∈ [30, 40].
This compensates for the higher runtime needed to compute
the warm-start, thus leading to analogous total runtimes of
≈ 2s for the three considered warm-starts, with an advantage
brought by ART of up to ≈ 0.3s for high CCVX(t1). To
further reduce the runtime of ART, we believe future work
could explore recent advances regarding inference-time opti-
mization for the Transformer architecture in Large Language
Models (LLMs)[42].

Finally, Figure 6 (on the right) presents the average unfeasi-
bility rate of SCP convergence over the analyzed test samples
for the three considered warm-starts. In particular, a given
problem instance is deemed to be unfeasible if the convex
solver [37] is unable to find any feasible optimal solution

5Computation times are from a Linux system equipped with a 3.60GHz
processor and 32GB RAM, and a NVIDIA RTX 2080 Ti 12GB GPU.
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Figure 7: Cartesian RTN trajectories (left), keep-out-zone costraint satisfaction (right).

Figure 8: ROE trajectories (left), maneuver profiles (right).

through all SCP iterations. In this case, the "CVX" warm-
starting benchmark provides the lowest SCP unfeasibility
rate, up to ≈ 0.5% better than ART, which in turn outper-
forms "CVX-TPBVP" by up to ≈ 3%. This result shows how
the most immediate convex relaxation ("CVX") is a reliable
warm-start and compelling benchmark to compare ART to.
The fact that ART performs similarly to "CVX" while out-
performing "CVX-TPBVP" can be seen as an indicator of the
reliability of ART trajectory generation.

Qualitative Assessment

To gain a qualitative and visual understanding of the potential
benefits of ART warm-starting trajectory generation, Figure 7
focuses on showing the trajectories for a specific test sample,
one for which ART warm-start leads to a substantially differ-
ent solution that is ≈ 11% more fuel-efficient than "CVX"
warm-start, in 16 fewer SCP iterations. Specifically, Figure
7 presents the cartesian rendezvous trajectories in the RTN
reference frame (left) together with the corresponding values
of the keep-out-zone constraint (right). The warm-starts are
dashed, and the corresponding SCP trajectories are depicted
by continuous lines. By focusing on the keep-out-zone con-
straint, it is interesting to notice how, in the interval [1, Nw.p.],
the "CVX" warm-start is largely unfeasible, thus violating the
keep-out-zone constraint multiple times. On the other hand,
the ART warm-start is almost always feasible. Finally, Figure
8 presents the corresponding ROE trends (left) together with
the corresponding maneuver profiles (right). Looking at the
ROE trends, it is interesting to observe further how the ART

warm-start places the initial trajectory closer to the final SCP
solution than the "CVX" warm-start, thereby representing a
better initial guess for the non-convex optimization problem.

6. CONCLUSIONS
The use of AI for spacecraft on-board autonomy, in both
theory and practice, is typically challenged by the lack of
constraint satisfaction guarantees and expensive simulation,
potentially hindering real-world adoption. In this paper,
we assess the capability of modern generative models to
solve complex trajectory optimization problems by propos-
ing the Autonomous Rendezvous Transformer for spacecraft
rendezvous. Specifically, instead of approaching the problem
purely end-to-end, with ML models directly mapping from
states to controls, we propose the use of Transformers to
warm-start a sequential convex program with the objective
of (i) enhancing traditional optimization-based methods via
ML, and (ii) enforcing hard constraint satisfaction within
learning-based approaches via optimization. Empirically,
results from a forecasting and control standpoint show how
ART is able to generate near-optimal trajectories efficiently
and outperform challenging benchmarks. This work further
investigates crucial design decisions and highlights a collec-
tion of desirable features that emerge from training mod-
ern generative models within a sequential decision-making
setting, such as the ability to accurately model trajectory
performance parameters. This work opens several promising
research directions including (i) investigating the robustness
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of the proposed methodology in presence of uncertainties
(e.g., stemming from navigation, actuation, and unmodeled
system dynamics), and (ii) the application to more realistic
closed-loop control scenarios, even in the event of contingen-
cies. More generally, we believe this research opens several
promising directions for the extension of this framework to
a broader class of complex trajectory optimization problems
within spacecraft applications.

APPENDIX
The Autonomous Rendezvous Transformer presented in this
work is implemented in PyTorch [43] and builds off Hugging-
face’s transformers library [44]. Specifically, Table 4
presents an overview of the hyperparameter settings used in
this work.
Table 4: Hyperameters of ART architecture for the autonomous
rendezvous experiments.

Hyperparameter Value
Number of layers 6
Number of attention heads 6
Embedding dimension 384
Batch size 4
Context length K 100
Non-linearity ReLU
Dropout 0.1
Learning rate 3e−5

Grad norm clip 1.0
Learning rate decay None
Gradient accumulation iters 8
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