
AAS 23-100

REDUCED-ORDER MODEL FOR SPACECRAFT SWARM ORBIT
DESIGN

Shane Lowe*, Simone D’Amico†

This paper presents a reduced-order model for use in the design of relative orbits for space-
craft swarm missions. Spacecraft swarms provide significant advantages compared to tra-
ditional, monolithic spacecraft, including improved robustness to failure owing to the dis-
tribution of payload tasks and the ability to create large, time-varying baselines between
individual spacecraft. These advantages come at the cost of increased mission complexity,
requiring mission designers to consider collision avoidance, the relative orbits of spacecraft
within the swarm, as well as the maintenance and reconfiguration of the swarm. The problem
of spacecraft swarm orbit design has been addressed in the literature for specific orbital sce-
narios, and many of its associated challenges have also been investigated, either in isolation
or as members of various subsets. However, existing methods have significant limitations
which make them unsuited to the more general problem of spacecraft swarm orbit design. A
reduced-order model is proposed to enable swarm orbit design. It is based on a parameteri-
zation of the spacecraft relative motion in terms of relative orbital elements, which permits
the straightforward visualization of relative orbit geometry, the analytical inclusion of per-
turbations and maneuvers, as well as the analytical computation of minimum inter-spacecraft
separation distances over extended time periods. The utility of the reduced-order model is
demonstrated in several scenarios which are representative of the challenges facing the Space
Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX), an upcoming
spacecraft swarm mission. Performance of the reduced-order model is then validated through
comparison with high-fidelity numerical simulation.

INTRODUCTION

Building on the success of early missions such as GRACE, PRISMA, and TanDEM-X, spacecraft for-
mation flying and the broader field of distributed space systems (DSS) are rapidly entering into the main-
stream of space mission design.1–3 The advantages offered by DSS, including improved robustness to failure
owing to the distribution of payload tasks among spacecraft, and the ability to create large, time-varying
baselines between individual spacecraft, are attractive to mission designers seeking to accomplish ground-
breaking mission objectives. A new generation of missions utilizing distributed architectures, including the
Starling Formation-Flying Optical Experiment (StarFOX), the Virtual Super Optics Reconfigurable Swarm
(VISORS), Cal X-1, and the Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-
EX), will push the boundaries of distributed optical navigation, heliophysics, X-ray astronomy, and aeron-
omy, respectively.4–7 The use of distributed architectures that enable these exciting advances comes at the
cost of substantially increased mission complexity. The challenges of mission design for traditional, mono-
lithic spacecraft are already considerable. However, this problem is taken to an extreme when employing
a distributed architecture, for which mission designers must also consider collision avoidance, the relative
orbits of their spacecraft, as well as the maintenance and reconfiguration of the swarm.

Several authors have directly addressed the problem of spacecraft swarm orbit design. The Integrated
Design Engineering and Automation of Swarms system provides an end-to-end mission design architecture
with potential application to several scenarios, including planetary moon flybys and Earth observation.8, 9
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However, the system is only applied to the case of inter-spacecraft separations on the scale of constellations
and, consequently, has limited application to any mission where collision avoidance within a swarm must be
considered. Similarly, a novel swarm mission design methodology was used for the HelioSwarm mission,
but application is limited to a specific, P/2 Earth-Moon resonant orbit.10

Each of the individual mission design considerations specific to spacecraft swarm missions have been ad-
dressed in the literature, either in isolation or in various subsets. The challenge of selecting an appropriate
swarm control methodology was addressed from a mission design perspective, however the methods inves-
tigated were found to be inefficient in terms of ∆v, or were only evaluated for performance in the period
immediately following deployment.11 A proposed swarm guidance and control methodology based on the
parameterization of the relative orbit in terms of relative orbital elements (ROE) offers passively bounded
relative motion and ensures user-specified minimum separations between all spacecraft.12 However, direct
adaptation of the proposed method to the problem of enabling complete swarm orbit design is infeasible due
to its complexity and reliance on convex optimization schemes.

In addition to the limitations already discussed, current methods lack the explainability that is critical for
mission designers to understand what trades are available to achieve mission objectives within constraints.
Enabling mission designers to understand how their decisions impact key mission parameters will become in-
creasingly important in the future as scientists who are not experts in spacecraft relative guidance, navigation,
and control (GNC) seek to avail themselves of the advantages offered by spacecraft swarms. This work will
address the limitations in the state of the art by developing a reduced-order model for spacecraft swarm orbit
design. The reduced-order model proposed is sufficiently computationally efficient to simulate long-duration
missions. It includes (1) swarm configuration, (2) passive and active safety, (3) swarm maintenance and re-
configuration, including the location and timeliness of maneuvers, and (4) delta-v consumption. Additionally,
the quantitative impacts of individual design choices are immediately apparent to mission designers.

Following this introduction, the reduced-order model is presented, including a review of the dynamics of
spacecraft relative motion. Next, a high-fidelity numerical simulation, which will be used in this paper for
validation of the reduced-order model, is described in detail. The SWARM-EX mission is then discussed,
with emphasis on how its scientific objectives impose requirements on swarm orbit design. Next, results
from the novel reduced-order model are validated through comparison with results obtained in high-fidelity
simulation for a set of scenarios that are illustrative of the challenges facing the SWARM-EX mission. Finally,
the contributions of this paper are summarized and potential future work is discussed.

REDUCED-ORDER MODEL

In this section, the reduced-order model is presented, beginning with a discussion of the parameterization of
spacecraft relative motion and a review of the dynamics of spacecraft relative motion. Next, two methods for
achieving swarm reconfigurations are presented, one based on propulsion and the other based on differential
atmospheric drag. Finally, a control methodology to ensure both passive and active safety, and to maintain a
desired swarm configuration, is introduced. It is important to note that the reduced-order model uses mean
absolute and relative orbital elements, as opposed to their osculating counterparts. Osculating absolute and
relative orbital elements include short-period dynamics effects, which are not relevant to the design of swarm
orbits over long time periods.

Relative Orbit Parameterization

In this paper, two parameterizations of spacecraft relative motion are used. The first parameterization is
in terms of ROE. Using ROE permits straightforward visualization of relative orbit geometry, the analytical
inclusion of perturbations and maneuvers, as well as the analytical computation of minimum inter-spacecraft
separation distances over extended time periods. The ROE are a nonlinear combination of the absolute orbital
elements for a chief spacecraft, denoted by the subscript c, and a deputy spacecraft, denoted by the subscript
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d, defined as

δα =


δa
δλ
δex
δey
δix
δiy

 =


(ad − ac)/ac

(Md + ωd)− (Mc + ωc) + (Ωd − Ωc) cos (ic)
ed cos (ωd)− ec cos (ωc)
ed sin (ωd)− ec sin (ωc)

id − ic
(Ωd − Ωc) sin (ic)

 (1)

The relative eccentricity and inclination vectors, δe and δi, can also be represented using polar notation as

δe =

[
δex
δey

]
=

[
δe cos (ϕ)
δe sin (ϕ)

]
δi =

[
δix
δiy

]
=

[
δi cos (θ)
δi sin (θ)

]
(2)

Here δe and δi represent the vector magnitudes, while the phase angles, ϕ and θ are the relative perigee and
relative ascending node, respectively. This paper also uses a Cartesian representation of the spacecraft relative
position and velocity. To obtain this parameterization of the relative motion, it is first necessary to introduce
an additional reference frame. The RTN frame, or Hill orbital frame, provides an intuitive basis from which
to observe spacecraft relative motion. The RTN frame is centered on the chief and consists of unit vectors
ôr, aligned with the orbit radial direction, ôn, normal to the orbital plane and aligned with the chief’s angular
momentum vector, and ôt, completing the right-handed triad.

(a) Earth-centered inertial reference frame for absolute
orbit parameterization.

(b) RTN reference frame for relative orbit parameteri-
zation.

Figure 1: Cartesian reference frames.

The relative position and velocity of a deputy with respect to a chief can be expressed in the RTN frame as

δx =


δrr
δrt
δrn
δvr
δvt
δvt

 =



∆r · ôr
∆r · ôt
∆r · ôn

∆v · ôr +∆r · ˙̂or
∆v · ôr +∆r · ˙̂ot
∆v · ôr +∆r · ˙̂on

 (3)

where the ∆(·) operator indicates an arithmetic difference and r and v represent Cartesian position and
velocity vectors, respectively. For near-circular orbits, the ROE have been shown to be equivalent to the
integration constants of the Hill-Clohessy-Wiltshire (HCW) equations.13 This permits a first-order mapping
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between ROE and relative position and velocity vectors as
δrr
δrt
δvr
δvt

 = ac


1 0 − cos(uc) − sin(uc)
0 1 2 sin(uc −2 cos(uc)
0 0 nc sin(uc) −nc cos(uc)

−1.5nc 0 2nc cos(uc) 2nc sin(uc)



δa
δλ
δex
δey

 (4)

[
δrn
δvn

]
= ac

[
sin(uc) − cos(uc)
nc cos(uc) nc sin(uc)

] [
δix
δiy

]
(5)

where the parameter u is the mean argument of latitude, defined as u = ω +M . Comparable relationships
between ROE and Cartesian relative motion representations have also been demonstrated in a variety of other
orbit regimes. A first-order mapping between relative position in the RTN frame and arithmetic differences
of classical Keplerian orbital elements was shown by Casotto and Schaub.14, 15 This has been extended to
eccentric orbits by demonstrating an equivalent relationship between ROE and the integration constants of
the Yamanaka-Ankersen equations by Sullivan and Guffanti.16, 17 The analysis in this paper is limited to
near-circular orbits. Therefore, only the mapping shown in Eqs. 4 and 5 will be used.

By projecting the relative position vector of a deputy with respect to a chief onto the RN plane and ex-
pressing the resulting equation in terms of ROE, an expression for the minimum separation distance between
the two spacecraft may be obtained as

δrmin
rn =

√
2ac|δe · δi|

(δe2 + δi2 + |δe+ δi| · |δe− δi|)1/2
(6)

Note that this expression is only valid for the case where δa = 0, which can be expected for spacecraft
swarms under nominal conditions since a non-zero δa results in a secular drift in along-track separation.
Inspection of Eq. 6 indicates that, in order to ensure the largest separation between spacecraft, δe and δi
should be (anti-)parallel and have the largest magnitude possible. This leads to the well known concept of
e-/i-vector separation to achieve passive safety for spacecraft swarms, which has been employed in multiple
spacecraft formation-flying and rendezvous missions, including GRACE, PRISMA, and TanDEM-X.1–3

Spacecraft Relative Motion

In unperturbed Keplerian motion, the time derivatives of the absolute orbital elements are zero except for
the mean anomaly, which varies as the mean motion, n.

da

dt
=
de

dt
=
di

dt
=
dΩ

dt
=
dω

dt
= 0

dM

dt
=
µ1/2

a3/2
= n (7)

By applying the terms in Eq. 7 to the definition of the ROE in Eq. 1, it is apparent that the ROE are constant
except for the relative mean longitude, which varies with the mean motions of the chief and deputy and
experiences a secular drift in the case of a non-zero δa. For the case where δa = 0, the relative motion of a
deputy with respect to a chief is described by an ellipse with semi-major axis 2aδe and semi-minor axis aδe
in the RT plane, with the mean along-track separation given by aδλ. Motion in the RN plane is described by
a harmonic oscillation with amplitude aδi.

For spacecraft in low Earth orbit (LEO), the dominant perturbations are J2 and atmospheric drag. Secular
variation of the mean absolute orbital elements due to J2 can be expressed as18

dα

dt
=

d

dt


a
e
i
Ω
ω
M

 = κ


0
0
0

−2 cos (i)
5 cos2(i)− 1

η(3 cos2(i)− 1)

 (8)
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Figure 2: Geometric interpretation of relative orbital elements.

where the parameters η and κ are defined as

η = (1− e2)1/2 κ =
3

4

J2R
2
Eµ

1/2

a7/2η4

By substituting into the definition of the ROE given in Eq. 1, the secular variation of the mean ROE due to
J2 can be expressed as19

dδα

dt
= κd


0

ηd(3 cos
2(id)− 1) + (5 cos2(id)− 1)− 2 cos (id) cos (ic)
−ed sin (ωd − ωc)(5 cos

2(id)− 1)
ed cos (ωd − ωc)(5 cos

2(id)− 1)
0

−2 cos (id) sin (ic)



− κc


0

(1 + ηc)(3 cos
2(ic)− 1)

−ed sin (ωd − ωc)(5 cos
2(ic)− 1)

ed cos (ωd − ωc)(5 cos
2(ic)− 1)

0
−2 cos (ic) sin (ic)



(9)

By assuming that the orbits are near-circular, and that the distance between the chief and deputy are much
smaller than either spacecraft’s distance to the central body, the expressions in Eq. 9 can be simplified
considerably to

dδα

dt
=


0

−7κc sin(2ic)δix
−κc(5 cos2(ic)− 1)δey
κc(5 cos

2(ic)− 1)δex
0

2κc sin
2(ic)δix

 (10)

Under this simplified model, the effects of J2 on the ROE are a secular drift in δλ and the δiy , both propor-
tional to δix, and a rotation of δe. The rate at which δe rotates, the time derivative of the relative perigee, ϕ,
can be expressed as

dϕ

dt
= κc(5 cos

2(ic)− 1) (11)

which is also equivalent to the time derivative of the absolute argument of periapsis, ω̇.12 These effects are
summarized in Figure 3.
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Figure 3: Effect of J2 on relative eccentricity and inclination vectors.

Spacecraft operating in LEO experience an acceleration acting in the anti-flight direction due to atmo-
spheric drag. This acceleration may be modeled as

pdrag =
1

2
ρv2B (12)

where ρ is the atmospheric density, v is the spacecraft’s velocity, andB is the spacecraft’s ballistic coefficient.
The ballistic coefficient is defined in terms of the drag coefficient, CD, cross-sectional area, A, and mass, m,
of the spacecraft as

B =
CDA

m
(13)

Consistent with the previous assumption of near-circular orbits, the spacecraft’s velocity, v may be approxi-
mated as

v = na (14)

The expression in Eq. 12 can then be rewritten as

pdrag =
1

2
ρa2n2B (15)

The effect of atmospheric drag on spacecraft relative orbits is a function of the relative ballistic coefficient be-
tween spacecraft, ∆B. This can vary due to a variety of factors, including spacecraft attitudes and propellant
expenditure. The relative ballistic coefficient may be computed as

∆B = Bd −Bc (16)

From the Gauss Variational Equations (GVE), an expression for the effect on the ROE of a relative accelera-
tion, δp, applied to a deputy in the RTN frame may be obtained as12

dδα

dt
=

1

an


0 2 0
−2 0 0

sin(uc) 2 cos(uc) 0
− cos(uc) 2 sin(uc) 0

0 0 cos(uc)
0 0 sin(uc)


δprδpt
δpn

 (17)

Considering that atmospheric drag acts solely in the anti-flight direction, the time derivative of δa is then
given by

dδa

dt
= ρan∆B (18)
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which shows a linear drift. This linear drift results in a quadratic accumulation of along-track separation as

dδλ

dt
=

3

2
ρan2∆Bt (19)

Although only perturbations of spacecraft relative motion due to J2 and atmospheric drag are considered in
this paper, the parameterization of the relative motion in terms of ROE also permits the analytical inclusion
of additional perturbations, including solar radiation pressure.20

Swarm Reconfiguration

Similarly to Eq. 17, an expression for the change in ROE due to an instantaneous velocity increment
applied to a deputy in the RTN frame may be obtained as

∆δα =
1

an


0 2 0
−2 0 0

sin(uc) 2 cos(uc) 0
− cos(uc) 2 sin(uc) 0

0 0 cos(uc)
0 0 sin(uc)


∆vr∆vt
∆vn

 (20)

where in-plane and out-of-plane control are decoupled. As demonstrated by the PRISMA and TanDEM-X
missions, control of δa, δλ, and δe can be achieved using pairs of equal and opposite impulsive maneuvers
in the tangential direction. Individual impulsive maneuvers in the normal direction can be used to control
δi. The reduced-order model is based on this particular control methodology because it is simple and has
extensive flight heritage.

More importantly to mission designers than the specific control methodology used, however, is the associ-
ated ∆v cost. The lower bound for the ∆v cost of an in-plane reconfiguration between an initial set of ROE,
δα0, and a final set of ROE, δα1, can be computed as21

∆vin-plane

nac
= max

(
|∆δa|
2

,
|∆δλ|
3∆t

,
∥∆δe∥

2

)
(21)

where ∆δ(·) = δ(·)1 − δ(·)0, ∆t is time between the first and second maneuvers of the pair, and ∥ · ∥
represents the L2 norm. Note that the reduced-order model does not consider reconfigurations of δa, and
so only the second and third terms of the right-hand side of Eq. 21 will be used. The time dependency for
along-track reconfiguration provides mission designers with a trade between the speed of a reconfiguration
and its ∆v cost. From Eq. 21, it is apparent that, for a given along-track reconfiguration, the time permitted
for the reconfiguration is inversely proportional to the ∆v cost. This inverse relationship can be explained
through a description of the control methodology for along-track reconfiguration using propulsion.

Figure 4: Change in δa and δλ during propulsive reconfiguration.

First, a tangential maneuver at u = uM1 introduces a difference in δa, resulting in a linear drift in δλ.
After a waiting period, ∆t, the desired value of δλ is reached. A second tangential maneuver at u = uM2
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corrects the difference in δa, arresting the drift. By expending more propellant, a larger initial difference in
δa is introduced, and subsequently corrected, increasing the drift rate and resulting in a shorter waiting period
to realize the same change in δλ.

Out-of-plane reconfiguration is achieved using a single impulsive maneuver in the normal direction. The
lower bound for the ∆v cost of this reconfiguration can be computed as21

∆vout-of-plane

nac
= ∥∆δi∥ (22)

The process for computing the total ∆v cost of a swarm reconfiguration, including in-plane and out-of-plane
components, is described in Algorithm 1.

Algorithm 1 Computation of Swarm Reconfiguration ∆v Cost

1 function computeDeltavReconfiguration(δα0, δα1,∆t, ac)
2 ∆δλ = |δλ1 − δλ0| ← Compute desired change in δλ
3 ∆δe = |δe1 − δe0| ← Compute desired change in δe
4 ∆vin-plane ← Compute in-plane reconfiguration cost (Eq. 21)
5 ∆δi = |δi1 − δi0| ← Compute desired change in δi
6 ∆vout-of-plane ← Compute out-of-plane reconfiguration cost (Eq. 22)
7 ∆vreconfig = ∆vin-plane +∆vout-of-plane
8 return ∆vreconfig

As suggested by Eqs. 17, 18, and 19, atmospheric drag may also be used to control in-plane spacecraft rel-
ative motion. The use of atmospheric drag for control is particularly attractive because it does not require the
expenditure of valuable propellant. Control using differential drag has been demonstrated in orbit for small
satellites and will undoubtedly continue to mature as a control methodology in the future.22 The reduced-
order model allows mission designers the flexibility to choose between using propulsion or differential drag
to realize along-track reconfigurations. Along-track reconfigurations using differential drag require that the
spacecraft in a swarm be capable of introducing a relative ballistic coefficient. Typically, this is achieved
through attitude control, with a spacecraft varying its cross-sectional area as viewed from the velocity direc-
tion. Although control of δe is also possible through differential drag, this is not included in the reduced-order
model.

Figure 5: Change in δa and δλ during differential drag reconfiguration.

The process of achieving an along-track reconfiguration using differential drag begins when the spacecraft
introduce a relative ballistic coefficient at u = uN1

. This causes a linear drift in δa, as described in Eq.
18, and a corresponding quadratic accumulation in δλ. This relative ballistic coefficient is maintained until
approximately half of the desired change in δλ has been achieved, at u = uN2

. At this point, the spacecraft
adjust their attitudes such that the relative ballistic coefficient now has the same magnitude but opposite sign.
This causes the linear drift in δa to reverse direction and trend towards zero, ideally reaching zero just as the
desired value of δλ is reached, at uN3

.
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In contrast to along-track reconfiguration using propulsion, mission designers are not able to choose the
amount of time that will be allowed for reconfiguration when using differential drag. Instead, they are able
to select ∆B, which is dependent on a variety of factors, including the physical design of spacecraft and
any attitude constraints. To determine the time required to perform an along-track reconfiguration using
differential drag, begin with the expression for the change in δλ due to a secular drift in δa, given by

∆δλ =
3

4
n
dδa

dt
∆t2 (23)

Using Eq. 18 and rearranging to isolate ∆t gives

∆t =

√
4∆δλ

3ρn2a∆B
(24)

The expression in Eq. 24 represents only part of an along-track reconfiguration, however, since an offset in
δa at the end of a maneuver is not desirable. As shown in Figure 5, the maneuver must be performed in
two parts, during each of which approximately half of the total desired change in δλ is achieved. Thus, the
amount of time required to perform a complete along-track reconfiguration may be computed as

∆tδλ =

√
8∆δλ

3ρn2a∆B
(25)

It should be noted that the ∆v costs presented in this section are lower bounds, and do not account for
sources of error such as navigation uncertainty or maneuver execution errors. Mission designers should add
an appropriate margin to these ∆v costs for planning purposes.

Swarm Maintenance

The reduced-order model uses the method of e-/i-vector separation for swarm maintenance by leveraging
knowledge of the secular evolution of the ROE due to perturbations. This methodology is based on defining
control windows around the nominal relative e-/i-vectors. The sizes of these control windows, δemax and
δimax, are parameters that may be chosen by mission designers. The e-/i-vectors follow predictable paths,
depicted by the dotted lines in Figure 6. When, for example, δe reaches the edge of its control window at
δepre, a pair of maneuvers is executed in order to shift the vector to the opposite edge of the control window,
at δepost. This minimizes the frequency of maneuvers that are performed while maintaining a passively safe
e-/i-vector separation.

Figure 6: Swarm maintenance nominal e-/i-vectors and control windows.

From Eq. 6, it is possible to compute the minimum inter-spacecraft separation for a given relative orbit.
However, this equation is only valid at a single instant, while the e-/i-vectors vary in time and can potentially
fall anywhere within the control window bounds over long time periods. Mission designers must know what
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is the worst case minimum inter-spacecraft separation for a given nominal relative orbit and set of control
window bounds. To find this, begin by computing the maximum allowed deviation of the relative perigee, δϕ
as

δϕ = arcsin

(
δemax

∥δenom∥

)
(26)

The pre- and post-maneuver relative eccentricity vectors can then be obtained by rotating δenom about the
z-axis by +δϕ and −δϕ. For δi, the pre- and post-maneuver vectors can be computed as

δipre =

[
δinomx

δinomy + sign(δinomx )δimax

]
δipost =

[
δinomx

δinomy − sign(δinomx )δimax

]
(27)

Next, a check is performed to determine if it is possible to form a right angle within the region swept by δe
and δi. This may be accomplished by computing the angles between each of the four possible combinations
of pre- and post-maneuver e-/i-vectors. If the minimum of this set is less than 90◦ and the maximum is
greater than 90◦, then the worst-case minimum separation is zero, indicating that a conjunction is possible.
Otherwise, the worst-case minimum separation will occur at one of the extremes. Returning to the pre- and
post-maneuver e-/i-vectors, Eq. 6 is used to compute the minimum separation for each of the four possible
combinations. Finally, the worst-case minimum separation is found by choosing the minimum of that set.

Figure 7: Determination of minimum inter-spacecraft separation over long time periods.

For the example shown in Figure 7, it is not possible to form a 90◦ angle. By visual inspection, the worst
case relative configuration occurs when δe reaches δepre and δi reaches δipre. The process of computing the
worst-case minimum inter-spacecraft separation is described in detail in Algorithm 2.

Algorithm 2 Computation of the Minimum Inter-Spacecraft Separation

1 function computeMinimumSeparation(δenom,δemax,δinom,δimax)
2 δϕ← Compute maximum deviation in ϕ (Eq. 26)
3 δepre, δepost ← Compute pre- and post-maneuver δe
4 δipre, δipost ← Compute pre- and post-maneuver δi (Eq. 27)
5 for m ∈ {pre, post}
6 for n ∈ {pre, post}
7 ψmn ← Compute angle between δem and δin

8 δrmn
rn ← Compute minimum separation between δem and δin (Eq. 6)

9 if min(ψmn) < 90◦ and max(ψmn) > 90◦ ∀m,n
10 δrmin

rn = 0
11 else
12 δrmin

rn = min(δrmn
rn ) ∀m,n

13 return δrmin
rn
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Another attractive feature of the method of e-/i-vector separation is that the locations of maneuvers are
highly deterministic. The location of the first maneuver in a pair for in-plane swarm maintenance may be
computed as

uM1 = arctan

(
δeposty − δeprey

δepostx − δeprex

)
(28)

while the maneuver of the second in-plane maneuver, uM2
is simply computed as uM2

= uM1
+ π. The

location of the single out-of-plane impulsive maneuver, uM can be computed as

uM = arctan

(
δiposty − δiprey

δipostx − δiprex

)
(29)

In addition to knowing where within an orbit maneuvers will be performed, it is important for mission design-
ers to understand how frequently pairs of in-plane or individual out-of-plane swarm maintenance maneuvers
must be performed. The e-/i-vectors will trace out their full path, as determined by the size of the control
windows, before corrective action is taken. By computing the lengths of those paths the maneuver frequency
can be approximated. The time between pairs of in-plane maneuvers is given by

∆tδe =
2δϕ+ πϕ̇

ϕ̇
(30)

where 2δϕ gives the angular path covered by the relative eccentricity vector as it moves from one edge of the
control window to the other and πϕ̇ gives the rotation experienced by δe during the period between the two
tangential maneuvers. Similarly, the time between individual out-of-plane maneuvers is given by

∆tδi =
2δimax

δ̇iy
(31)

The minimum of ∆tδe and ∆tδi is then the driver of swarm maintenance maneuver frequency, given by

∆tmaneuver = min
(
∆tδe, ∆tδi

)
(32)

Finally, mission designers must be able to estimate the ∆v cost of swarm maintenance over extended time
periods. This ∆v cost can be approximated by assuming that, over a time period, ∆t, all secular drift of the
e-/i-vectors must be corrected. Although this correction is actually performed incrementally, the computation
of the ∆v cost is a function only of the magnitude of the correction and does not consider how it is discretized.
Thus, by computing the total secular drift over ∆t and then computing the cost of correcting that drift, the
∆v cost may be approximated as

∆vin-plane

nac
= ϕ̇∆t

∥δenom∥
2

(33)

for in-plane swarm maintenance. Out-of-plane maintenance cost can similarly be computed as

∆vout-of-plane

nac
= δ̇iy∆t (34)

The total cost of swarm maintenance is then given by

∆vtotal = ∆vin-plane +∆vout-of-plane (35)

Although the presentation of the reduced-order model has thus far been limited to a pair of spacecraft, its
extension to larger numbers of spacecraft is possible with minimal effort. There are multiple methods by
which this may be accomplished. One possible method is to separate all spacecraft in the swarm in the along-
track sense and have each control their relative orbit with respect to a common reference. If more flexibility
is needed, Koenig has proposed a method by which the general concept of e-/i-vector separation may be
extended to arbitrarily large spacecraft swarms.12 For the purposes of the reduced-order model, simply repeat
the calculations for each individual spacecraft with respect to the common reference, or, if needed, with
respect to each pair in the swarm.
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HIGH-FIDELITY NUMERICAL SIMULATION

While the reduced-order model presented in the previous section provides information that is essential to
the design of spacecraft swarm orbits, the information cannot be expected to have the same level of accuracy
as that which may be obtained through high-fidelity numerical simulation. Instead, the low computational
complexity of the reduced-order model permits the rapid simulation of missions lasting for months, which is
infeasible for high-fidelity simulation. However, a reduced-order model is only valuable if the information it
provides is sufficiently accurate. In order to demonstrate that the reduced-order model meets this criteria, its
outputs must be validated through comparison with some “reference truth”. In this section, the high-fidelity
simulation that will serve as the reference truth is presented.

Space Rendezvous Laboratory Satellite Software

The Space Rendezvous Laboratory Satellite Software (S3) is a custom software library which includes
modules for numerical orbit propagation, orbit and attitude perturbation modeling, reference system transfor-
mation, and time system conversion.23 The underlying software is written in C++ to enable speed and porta-
bility. Additionally, S-function and MEX function wrappers allow S3 to be used within a MATLAB/Simulink
environment.

Table 1: High-fidelity simulation force models and corrections.

Perturbation/Transformation Model

Equations of motion Gauss variational equations

Numerical integrator Fourth-order Runge-Kutta24

Richardson extrapolation25

Gravity field GRACE Gravity Model GGM01S (120x120)26

Atmospheric drag NRLMSISE-0024

Cannonball spacecraft model24

Solar radiation pressure Flat plate model24

Conical Earth shadow model24

Geomagnetic and solar flux data NOAA daily KP AP indices

Third-body perturbation Analytical Sun and Moon24

Relativistic corrections First-order corrections for special and general relativistic effects24

The performance of S3 has been validated extensively through comparison with flight products from the
PRISMA mission. For the subsequent analysis in this paper, the force models and perturbations shown in
Table 1 are used.

Simulation Guidance, Navigation, and Control

In addition to those perturbations summarized in Table 1, the high-fidelity simulation includes navigation
and maneuver execution errors. Navigation error is modeled as zero mean, white Gaussian noise that is
added to the reference truth ROE state, with standard deviation based on flight results from the TanDEM-X
mission.3 Maneuver execution errors are modeled through multiple sources. First, the combination of the
discretization of the simulation time interval and navigation errors ensure that maneuvers are not executed
at the “ideal” time. Second, white Gaussian noise is added to planned maneuver vectors in the RTN frame.
This simulates errors in both the magnitude and direction of maneuvers due to imperfect thruster and attitude
control.
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SWARM-EX MISSION AND REQUIREMENTS

The SWARM-EX mission consists of three 3U CubeSats operating in LEO. Each spacecraft is equipped
with a self-contained attitude determination and control system (ADCS) and a cold gas propulsion unit, con-
sisting of a single thruster and propellant tank. The ADCS enables 3-axis attitude control, and, in combination
with the propulsion unit, allows SWARM-EX spacecraft to perform propulsive maneuvers in any direction.
The GNC software onboard each spacecraft consists of a navigation module and a control module. The nav-
igation module uses an unscented Kalman filter to estimate absolute orbital elements and ROE, as well as
auxiliary parameters. The control module is based on the method of e-/i-vector separation but also includes a
novel hybrid propulsive/differential drag control scheme for experimental purposes.27

SWARM-EX has an ambitious set of scientific and engineering objectives meant to address outstanding
questions in aeronomy and to advance the state of the art in spacecraft swarming and related technologies.
The spacecraft use deployable solar panels, resulting in a maximum cross-sectional area that is approximately
nine times their minimum cross-sectional area, as shown in Figure 8.

Figure 8: Digital rendering of SWARM-EX spacecraft structural design.

This significant difference in the achievable cross-sectional areas motivates the use of control through dif-
ferential drag, and enables a novel experiment in which the spacecraft themselves will be used as a distributed
aeronomy sensor. In this experiment, the ballistic coefficients of SWARM-EX spacecraft will be modulated
to increase the sensitivity of their relative motion to atmospheric drag. Through simultaneous, precise es-
timation of the spacecraft relative motion and environmental parameters, atmospheric mass density will be
recovered. The scientific objectives are focused on the equatorial ionization anomaly (EIA) and equatorial
thermospheric anomaly (ETA), features of the ionized region of the upper atmosphere. Using Flux-Probe-
Experiment and Langmuir probe sensors, SWARM-EX will make in-situ measurements of plasma and neutral
densities in the EIA and ETA at a variety of spatial and temporal scales. The mission objectives are divided
into a set of primary science questions (PSQ) and secondary measurement demonstrations (SMD).

Table 2: Summary of high-level SWARM-EX mission objectives.

Primary Science Questions

PSQ-1 How persistent and correlated are the plasma density and neutral density in the EIA and ETA features?

PSQ-2 Over what timescales (< 90 min) do we observe changes in the EIA and ETA properties due to non-
migrating tides and geomagnetic activity?

Secondary Measurement Demonstrations

SMD-1 Cross-calibrate the plasma and AO measurements from each spacecraft

SMD-2 Demonstrate horizontal plasma gradient density measurements as scales of ≤ 10 km

SMD-3 Demonstrate the ability to estimate mass density by observing the relative motion of two spacecraft

SMD-4 Demonstrate estimation of density gradients at vertical scales ≥ 10 km
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Each PSQ and SMD is further subdivided into one or more measurement objectives. These measurement
objectives are then translated into requirements for the absolute and relative orbits, as shown in Table 3.

Table 3: Sample of SWARM-EX measurement objectives and corresponding orbit requirements.

Measurement Objective Orbit Requirement

PSQ-1.B Make dayside observations of plasma density over
±20◦ from the magnetic equator

50◦ < i < 130◦

PSQ-1.D Simultaneously observe the southern crest, north-
ern crest, and trough of the EIA and ETA

Mean along track separation 1300±100 km while
in target region

PSQ-1.E Make observations at altitudes > 400 km and <
450 km

6798.137 km < a < 6853.137 km at deployment

SMD-3 Measure relative velocity of two spacecraft over a
1-week period

Mean along-track separation ≤ 100 km and max-
imum radial separation ≤ 10 km

SMD-4 Measure plasma and neutral densities with vertical
distances between sensors ≥ 10 km over a 1-week
period

Mean along-track separation ≤ 10 km and max-
imum radial separation ≥ 10 km while in target
region

In order to achieve its objectives, SWARM-EX must realize a variety of relative orbits, including along-
track separations ranging from hundreds of meters to thousands of kilometers. The development of the
reduced-order model proposed in this paper was specifically motivated by the need to provide accurate in-
formation to SWARM-EX mission designers. Important questions arose early in the mission development
process about ∆v consumption, safety, and other key mission parameters that could not be satisfactorily
answered using existing models and methods.

Analysis performed using the reduced-order model has informed many aspects of the SWARM-EX mission
design, including ∆v budgeting and concept of operations development, the selection of onboard commu-
nications hardware, and the physical size of propellant tanks. For example, the accomplishment of SMD-4
requires the introduction of a radial separation≥ 10 km between spacecraft, necessitating a large out-of-plane
reconfiguration. Once informed of the high estimated ∆v cost of this reconfiguration, mission designers de-
cided to move SMD-4 into the extended mission phase so as not to jeopardize other, higher priority mission
objectives.

The diversity of its mission objectives and the corresponding orbit requirements make SWARM-EX em-
blematic of the future of spacecraft swarms. Therefore, all subsequent analysis in this paper is performed
with reference to the SWARM-EX mission.

RESULTS

In this section, two scenarios are presented which are illustrative of the challenges faced by SWARM-EX.
Each scenario is evaluated using both the reduced-order model and high-fidelity simulation. Performance of
the reduced-order model is then validated through comparison of the two sets of results. The first scenario
is focused on swarm reconfiguration, and demonstrates how mission designers can approach the problem
of performing along-track reconfigurations. The second scenario is focused on swarm maintenance, and
demonstrates how mission designers can use the reduced-order model to address safety, ∆v consumption,
and maneuver timeliness over long time periods.

Table 4: SWARM-EX spacecraft simulation parameters.

Parameter Mass CD AD CR ASRP

Value 5.0 kg 2.2 0.010 m2 (low-drag) 0.025 m2 (high-drag) 0.2 0.040 m2
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For consistency, the spacecraft parameters are held constant throughout this analysis for both the reduced-
order model and the high-fidelity simulation. Note that the cross-sectional area, AD, is chosen based on
whether a spacecraft is in a low-drag or high-drag attitude. Although the SWARM-EX spacecraft have an
achievable cross-sectional area of up to 0.090 m2, there are a variety of constraints which make maintaining
this attitude for extended time periods infeasible.28 Instead, the high-drag value shown in Table 4 is chosen
conservatively. Additionally, because solar radiation pressure is not included in the reduced-order model, CR

and ASRP are only used in the high-fidelity simulation.

Swarm Reconfiguration

In this scenario, two SWARM-EX spacecraft perform a reconfiguration using either propulsion or differ-
ential drag. The chief’s initial mean absolute orbital elements are given by

αc = [6853.137 km, 0.0001, 51.6◦, 28.0◦, 65.0◦, 47.0◦]T (36)

the initial set of nominal ROE is given by

aδαnom
0 = [0, 1000, 0, 1000, 0, 1000]T m (37)

and the desired set of ROE after reconfiguration is given by

aδαnom
1 = [0, 5000, 0, 1000, 0, 1000]T m (38)

representing an increase in the mean along-track separation of 4 km.

Propulsive Reconfiguration As previously discussed, when realizing an along-track reconfiguration using
propulsion, the time duration of the reconfiguration is a parameter that is chosen by the mission designer. For
this scenario, the allowed reconfiguration duration, ∆t, is given by

∆t = 16.0 orbits (39)

Due to the modeling of navigation and maneuver execution errors in the high-fidelity simulation, it is expected
that performing a large number of simulation runs will give a distribution of results for the reconfiguration
duration and ∆v cost. However, these error sources are not modeled directly in the reduced-order model.
Using Algorithm 1, with inputs given by Eqs. 36-39, the reduced-order model instead produces a single result
for ∆vreconfig. By approximating the effects of navigation and maneuver execution errors in the reduced-order
model, a more meaningful comparison could be made with the high-fidelity simulation. To achieve this, a
large number runs of the reduced-order model are performed while sampling from normal distributions for
∆t and for the mean along-track separation at the end of the reconfiguration, aδλ1.

Performing 1000 runs each of the high-fidelity simulation and the reduced-order model gives the distri-
butions of results shown in Figure 9, where each triangle or circle represents a single simulation run for
the high-fidelity simulation or reduced-order model, respectively. For clarity, 3-σ bounds are also included
for the high-fidelity simulation (dashed line) and reduced-order model (solid line). As shown, only a small
number of reduced-order model runs lie outside the 3-σ bounds for the high-fidelity simulation.

Table 5: Error statistics for propulsive reconfiguration scenario.

Error Mean Error Std Dev (1-σ)

∆vreconfig [cm/s] 0.04 (1.48%) 0.03 (1.14%)

∆t [# orbits] 0.20 (1.24%) 0.15 (0.94%)

Using the mean value of the results obtained through high-fidelity simulation as the reference truth, errors
are computed by taking the difference between that value and each individual run of the reduced-order model.
These errors are summarized in Table 5. This result demonstrates that, although there is a range of possible
outcomes for a given reconfiguration, the reduced-order provides an excellent approximation of the ∆v cost
and the time required for that reconfiguration.
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Figure 9: Swarm reconfiguration results using propulsion.

Differential Drag Reconfiguration For along-track reconfigurations using differential drag, the time dura-
tion of the reconfiguration, ∆tδλ is not a parameter that mission designers are able to choose. Instead, ∆tδλ
is a key output of the reduced-order model. Drag-based reconfiguration maneuvers are highly sensitive to
atmospheric density, ρ. From Eq. 25, the computation of ∆tδλ relies on a constant value for ρ. The selection
the value of ρ used in the reduced-order model must be based on several factors, including the orbit altitude
and expected solar activity during the mission. In this scenario, the value of ρ used in the reduced-order
model is the mean of the atmospheric density experienced by the spacecraft in the high-fidelity simulation.

Figure 10: Swarm reconfiguration results using differential drag.

Performing 500 runs of the reduced-order model and 250 runs of the high-fidelity simulation for the recon-
figuration defined by Eqs. 37 and 38 provides the distributions for ∆tδλ shown in Figure 10. As before, the
high-fidelity simulation produces a distribution of results due to navigation and maneuver execution errors.
In order to approximate these effects in the reduced-order model, the mean along-track separation at the end
of the reconfiguration, aδλ1, is sampled from a normal distribution.

Table 6: Error statistics for differential drag reconfiguration scenario.

Error Mean Error Std Dev (1-σ)

∆tδλ [# orbits] 0.029 (0.10%) 0.021 (0.07%)
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The result of computing errors using the methodology from the previous scenario is shown in Table 6.
For reconfiguration using differential drag, the reduced-order model provides results which are comparable
to those obtained through high-fidelity simulation. With careful selection of ρ, mission designers can be
confident in the values for ∆tδλ provided by the reduced-order model.

Swarm Maintenance

In this scenario, two SWARM-EX spacecraft maintain a desired swarm configuration for a period of ap-
proximately 100 orbits. The initial mean absolute orbital elements of the chief are given by Eq. 36. The set
of nominal ROE to be maintained is given by

aδαnom = [0, 1000, 0, 1000, 0, 1000]T m (40)

The sizes of the control windows for the relative e-/i-vectors are given by

δemax = δimax = 100 m (41)

As before, a distribution of results is expected for ∆vtotal and δrmin
rn . In this scenario, navigation and maneuver

execution errors are simulated in the reduced-order model by sampling from normal distributions for the
control window bounds, δemax and δimax, as well as the time duration of swarm maintenance.

Figure 11: Swarm maintenance results.

Performing 500 runs each of the high-fidelity simulation and reduced-order model produces the distribu-
tions shown in Figure 11. The results from the reduced-order model overlap considerably with those obtained
through high-fidelity simulation, with only a handful of individual simulation runs outside of the high fidelity
simulation’s 3-σ bounds. Each of the distributions has an abrupt cut-off at some maximum value for δrmin

rn

which lies well within their 3-σ bounds. This phenomenon merits additional discussion.

The maximum value for δrmin
rn exhibited by both distributions is slightly offset from the corresponding

value output by Algorithm 2 for inputs given by Eqs. 40 and 41, shown in Figure 11 as a vertical dashed
line. For this scenario, that value is 895.3 m, which represents an ideal case where maneuvers are performed
precisely at the control window bounds. With a controller in the loop, however, additional complications
emerge. At each time step, the controller performs a check to determine if the control window bounds are
being violated or if it expects that they will be violated at the next time step. In either case, a propulsive
maneuver is performed in order to maintain the desired relative configuration. However, the presence of
navigation errors means that these maneuvers can be performed slightly early, before the control window
bounds have been reached. This results in the offset from the deterministic value from the reduced-order
model, and a larger value for δrmin

rn . They can also be performed late, resulting in a smaller value for δrmin
rn .

Maneuver execution errors can then have a compounding effect when an overcorrection causes the control
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window bounds to be further exceeded at the end of a maneuver. This results in the spread of values for
δrmin

rn to the left of the vertical line. In the reduced-order model, this controller behavior is reproduced by
only accepting sampled values of δemax and δimax which represent maneuvers executed late or, at most, a few
of time steps early.

Table 7: Error statistics for swarm maintenance scenario.

Error Mean Error Std Dev (1-σ)

δrmin
rn [m] 2.73 (0.31%) 2.15 (0.24%)

∆vtotal [cm/s] 0.36 (1.63%) 0.26 (1.18%)

As shown in Table 7, the reduced-order model produces results for ∆vtotal and δrmin
rn which are comparable

to those obtained through high-fidelity simulation. Note that in the high-fidelity simulation, the path that
is taken by δe between the maneuvers performed at uM1 and uM2 is neglected. During this period, the
magnitude of the δe is briefly reduced, resulting in a smaller value for δrmin

rn . However, this effect is transient,
lasting for half of one orbit, and does not negatively impact safety.

Figure 12: Swarm maintenance maneuver locations.

From Eq. 28, the reduced-order model provides in-plane maneuver locations uM1 = 0◦ and uM2 = 180◦.
The distribution of values for uM1

and uM2
from the high-fidelity simulation are shown in Figure 12, along

with the corresponding values from the reduced-order model, depicted as dashed lines. Note that there are
more results to the left of the dashed line, representing maneuvers executed early. This is due to the controller
behavior discussed previously.

Run-time Comparison

The need to provide reliable estimates of key mission parameters at low computational cost was a principal
motivation behind the development of the reduced-order model. In order to validate that the reduced-order
model is able to meet this requirement for low computational cost, its run time is compared to the run time
for the high-fidelity simulation in each of the previous scenarios.

As shown in Table 8, the reduced-order model provides a speedup of more than five orders of magnitude
when compared to the high-fidelity simulation. These run time tests are performed using a contemporary
desktop CPU and demonstrate that the reduced-order model provides a dramatic reduction in run time com-
pared to high-fidelity simulation, thereby enabling the rapid simulation of long-duration swarm missions.
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Table 8: Simulation run times for reduced-order model and high-fidelity simulation.

Scenario
Run Time [ms]

Speedup
High-Fidelity Simulation Reduced-Order Model

Swarm Reconfiguration 13604 0.11 123672

Swarm Maintenance 85457 0.15 569713

CONCLUSION

Spacecraft swarms offer significant advantages compared to monolithic spacecraft. However, these ad-
vantages come at the cost of a substantial increase in mission complexity. Mission designers working on
spacecraft swarm missions must consider collision avoidance, swarm maintenance and reconfiguration, as
well as the relative orbits of spacecraft within the swarm. The problem of swarm orbit design has been ad-
dressed in the literature for specific orbital scenarios, or in ways that, while more general, are complex and
computationally expensive. The reduced-order model proposed in this paper provides a tool to enable the
design of swarm orbits for missions lasting months or more, while providing enough flexibility for mission
designers to meet diverse mission objectives.

The reduced-order model allows for the straightforward visualization of relative motion, the analytical in-
clusion of maneuvers and relevant perturbations, and the analytical computation of minimum inter-spacecraft
separations over extended time periods. These capabilities are permitted by the parameterization of the space-
craft relative motion in terms of relative orbital elements (ROE). The reduced-order model is based on the
well known method of e-/i-vector separation, a flight-proven guidance and control concept which provides
passive safety for spacecraft formations. To add flexibility, swarm reconfigurations can be performed using
either propulsion or differential drag.

Validation of the reduced-order model was performed through comparison with results obtained in high-
fidelity numerical simulation in two scenarios representative of the challenges facing swarm missions. These
results showed that the reduced-order model consistently provided accurate estimates of key mission param-
eters, at a significantly lower computational cost, despite the inclusion of navigation and maneuver execution
errors in the high-fidelity simulation. Therefore, mission designers can utilize the reduced-order model in the
design of swarm orbits with confidence that the information being provided is sufficiently accurate to inform
mission design.

Currently, the reduced-order model has only been demonstrated in near-circular, low Earth orbit (LEO)
scenarios. Future work should seek to improve the reduced-order model by extending it to additional orbital
regimes, including eccentric orbits, orbits outside of LEO, and orbits around other central bodies. The model
could also be further developed in order to output additional parameters of interest, related to scientific objec-
tives or other mission requirements. Finally, the reduced-order model may be used in the future to efficiently
generate orbit and performance data for reinforcement learning applications.
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