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ANGLES-ONLY TRACKING AND NAVIGATION FOR APPROACH
AND RENDEZVOUS IN GEOSYNCHRONOUS ORBITS

Justin Kruger*, Simone D’Amico †, Christopher Roscoe ‡ and Jason
Westphal §

Onboard relative navigation for geosynchronous rendezvous using vision-based
sensors poses unique challenges for target tracking and orbit determination al-
gorithms. Uncertainties in a priori state information require intelligent methods
for discriminating potentially non-cooperative targets amongst multiple dynami-
cally similar objects. Tracking is needed during fast rendezvous approaches and
continuous thrusting arcs, presenting challenging angles-only observability. This
paper describes usage of new on-board tracking models, short-arc orbit determi-
nation methods, and system state augmentations to extend an angles-only naviga-
tion architecture to the geosynchronous environment. High-fidelity simulations of
single-observer rendezvous and multi-observer target tracking demonstrate robust
performance in support of autonomous satellite inspection and servicing.

INTRODUCTION

In recent years, there has been immense growth in usage of the space environment, driving a need
for greater efficiency in how satellite vehicles are leveraged and maintained.1 Satellite lifetimes in
orbit are currently limited by finite on-board fuel resources or hardware degradation and failure, and
it is desirable to be able to service or refuel target satellites to extend their lifetime in a more sustain-
able fashion. Of particular focus is servicing for satellites in geosynchronous orbits (GEO).2 Such
satellites are often very large, expensive, and tasked with fulfilling critical long-term objectives, and
slots for additional satellites in the GEO belt are limited. A variety of mission concepts have been
proposed for this purpose.3–6

To enable rendezvous with a desired target, it is necessary to be able to characterize the object
and robustly determine its relative orbit during a servicer’s approach. However, target satellites
may be known versus unknown, or cooperative versus uncooperative, which creates navigation
challenges. External measurement sources such as Global Navigation Satellite System (GNSS)
signals, and cooperative measurements such as inter-satellite ranging, may be unavailable for targets
of interest. Radar, lidar and related techniques are generally inappropriate for spacecraft due to
their complexity, mass and power requirements. In addition, relying on ground support for orbit
determination possesses limited scalability and reduces autonomy and responsiveness on orbit.
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A potential solution is angles-only navigation, in which observer satellites use on-board vision-
based sensors (VBS) to obtain bearing angles to target space objects. Benefits of the angles-only
approach are that it is passive and can navigate for non-cooperative targets; the ubiquity, accuracy
and robustness of cameras; and a reliance on on-board measurements rather than external resources.
Conversely, optical measurements are affected by physical target visibility constraints, and bearing
angles do not provide explicit target range information. This leads to complex relationships between
state observability and measurements as well as weakly observable system modes.7–9

The feasibility of angles-only navigation in orbit has been demonstrated by two prior flight ex-
periments. In 2012, the Advanced Rendezvous using GPS and Optical Navigation (ARGON) ex-
periment enabled the rendezvous of two smallsats in Low Earth Orbit (LEO) from inter-satellite
separations of 30 km to 3 km.10 Subsequently, the Autonomous Vision Approach Navigation and
Target Identification (AVANTI) experiment conducted a rendezvous of two smallsats from separa-
tions of 13 km to 50 m11 in 2016. Although both experiments were successful, they are characterized
by four key deficiencies: 1) inability to accommodate multiple observers and targets 2) reliance on
accurate a-priori relative orbit information for initialization, 3) reliance on external knowledge of
the observer’s absolute orbit to maintain state convergence, and 4) reliance on frequent translational
maneuvers to resolve the weakly observable range to the target.

In response, Stanford’s Space Rendezvous Laboratory (SLAB) has proposed the Absolute and
Relative Trajectory Measurement System (ARTMS)12.13 ARTMS is an autonomous angles-only
navigation architecture for multi-agent space systems divided into three modules and corresponding
new algorithms: IMage Processing (IMP),14 Batch Orbit Determination (BOD),15 and Sequential
Orbit Determination (SOD).12 IMP identifies multiple resident space objects (RSO) in 2D images
from a single monocular camera without requiring a-priori relative orbit knowledge. BOD generates
an initial state estimate for all participating satellites by using batches of angles to targets and a
single coarse absolute orbit initialization for the observer. SOD continually refines the ARTMS
state estimate using an adaptive and efficient unscented Kalman filter (UKF), fusing measurements
from multiple observers broadcast over an inter-satellite link (ISL). In this fashion, ARTMS enables
distributed, autonomous, and scalable angles-only navigation with minimal reliance on external or
a-priori information and no reliance on maneuvers.

ARTMS is due to be flight-tested in LEO during the Starling Formation-flying Optical eXperi-
ment (StarFOX).16 StarFOX is a core payload of the upcoming NASA Starling mission, a technol-
ogy demonstration consisting of four CubeSats scheduled for launch in 2023. The use of ARTMS
to support navigation in deep space has also been studied in the form of high-fidelity simulations in
lunar and Martian environments.17, 18

This paper explores the applicability and extension of ARTMS to angles-only navigation in GEO,
with a focus on target characterization and rendezvous during servicing scenarios. Significant al-
gorithmic modifications are needed, given that ARTMS was initially developed for a LEO swarm
experiment with relatively static inter-satellite spacings. Similarities in dynamics amongst objects
in the GEO belt require intelligent methods for discriminating between multiple simultaneous object
detections when acquiring desired targets, based on a priori states which are uncertain or unknown.
Tracking must also be maintained during both fast approach maneuvers and long-duration thrusting
arcs by the observer. Angles-only observability must be carefully accounted for, given the long-term
perturbing effects of forces such as solar radiation pressure (SRP).

To address these concerns, this work extends ARTMS with several algorithmic developments,
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including 1) new tracking and identification modes in IMP for increased precision during target
acquisition; 2) exploration of new second-order dynamics models and fast initial relative orbit de-
termination methods for BOD; and 3) augmentation of estimated states for more autonomy and
robustness in SOD. Algorithms are validated with high-fidelity simulations of several target char-
acterization and rendezvous scenarios in GEO, using the ARTMS flight software framework. The
potential of autonomous distributed angles-only navigation for enabling and supporting satellite
inspection and servicing in GEO is demonstrated.

The paper is organized as follows. First, the mathematical background of the ARTMS measure-
ment model, dynamics model, and estimated state is presented. This is followed by an introduc-
tion to the ARTMS architecture and core algorithms, as well as algorithmic modifications to allow
ARTMS to operate in GEO. Simulation scenarios and the data generation pipeline are then detailed,
along with a discussion of results. The final section contains concluding remarks.

MODELING PRELIMINARIES

Measurement Model

ARTMS produces angles-only measurements by computing time-tagged bearing angles to ob-
jects detected in VBS images. First, define the radial/along-track/cross-track (RTN) frame of the
observer, denoted R. It is centered on and rotates with the observer and consists of orthogonal
basis vectors x̂R (directed along the observer’s absolute position vector); ẑR (directed along the
observer’s orbital angular momentum vector); and ŷR = ẑR × x̂R.19 Similarly, define a frame W
using ŷW (directed along the observer’s velocity vector); ẑW = ẑR; and x̂W = ŷW × ẑW . W
only differs from R by a rotation of the observer flight path angle ϕf about ẑR with ϕf ≈ 0 in
near-circular orbits.19 Bearing angles consist of azimuth and elevation (α, ϵ) and subtend the LOS
vector δrV = (δrVx , δr

V
y , δr

V
z ) from the observer to the target. Superscript V indicates description

in the observer VBS coordinate frame, consisting of orthogonal basis vectors x̂V , ŷV , ẑV , such that
ẑV is directed along the camera boresight. The VBS may be aligned as necessary to keep swarm
targets in the field of view (FOV). Bearing angles are then computed via12

(
α
ϵ

)V
=

(
arcsin δrVy /||δrV ||2
arctan δrVx /δr

V
z

)
(1)

Bearing angles can be related to the inertial frame by rotating δrV into the Earth-Centered Inertial
(ECI) frame I, as per

δrI = V−→RIδrV (2)

where V−→RI denotes a rotation from frame V into frame I. This rotation matrix is computed by
performing attitude determination using stars identified by the VBS.10 Rotation matrices R−→RI and
W−→
RI can be computed using the observer’s absolute orbit estimate. Figure 1 depicts the relation-

ship between coordinate frames and bearing angles.

State Parametrization

ARTMS represents the absolute state α of the observer in terms of orbit elements (OE), which
may be either quasi-nonsingular (QNS) or nonsingular (NS). The quasi-nonsingular OE possess a
singularity when the orbit inclination is zero whereas the nonsingular OE do not.19 The nonsingular
OE are therefore applicable to navigation for geosynchronous orbits, which are typically equatorial.
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Figure 1: Definition of target bearing an-
gles with respect to V,R and W , with the
VBS pointing in the anti-velocity direc-
tion.

Figure 2: Target relative motion in the x̂R-ŷR

(RT) and x̂R-ẑR (RN) planes. Motion first-order
in spacecraft separation is in black. Motion pro-
portional to e is in red.12
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Above, a, e, i,Ω, ω, and M are the canonical Keplerian OE of semi-major axis, eccentricity, inclina-
tion, right ascension of the ascending node, argument of periapsis, and mean anomaly respectively.
Additionally, p is the semilatus rectum, u is the mean argument of latitude, and L is the mean
longitude. All are computed with respect to I.

The relative orbit δα of a target spacecraft, as tracked by an observer, is described by relative
orbit elements (ROE).20, 21 The ROE state parametrization may be QNS or NS, with the nonsingular
ROE avoiding singularities at zero inclination. The ROE are defined in terms of the absolute OE of
the observer and target (denoted by subscripts ‘o’ and ‘t’ respectively) via

δαQNS =
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 (4)

Above, δa is the relative semi-major axis, δλ is the relative mean longitude, δe = (δex, δey) is
the relative eccentricity vector with magnitude δe and phase φ, and δi = (δix, δiy) is the relative
inclination vector with magnitude δi and phase ϑ.

The ARTMS state also includes several optional components. First are absolute empirical accel-
erations for the observer and differential empirical accelerations for targets, defined as

aR
emp =

ax
ay
az

R

δaR
emp =

δax
δay
δaz

R

=

ax,t − ax,o
ay,t − ay,o
az,t − az,o

R

(5)
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respectively in R. Empirical accelerations are used to approximately capture unmodeled dynamics,
and are more computationally efficient than numerically integrating the full differential equations
of relative motion.22 The absolute ballistic coefficient of the observer and differential ballistic coef-
ficients of targets with respect to the observer can also be estimated, denoted as

B =

(
Batm
Bsrp

)
δB =

(
δBatm
δBsrp

)
=

(
Batm,t −Batm,o

Bsrp,t −Bsrp,o

)
(6)

For the GEO case, only the SRP coefficient is taken into account. Additional state components such
as clock errors, clock drift rates and VBS sensor biases can be estimated by ARTMS12, 17 but are
not included here. Thus, for the observer and n tracked targets, the complete ARTMS state is

x = (α,a,B, δα1, δa1, δB1..., δαn, δan, δBn) (7)

Dynamics Model

ARTMS propagates the absolute orbits of observer and target spacecraft using fourth-order Runge-
Kutta integration of the Gauss Variational Equations (GVE). For state α, the osculating OE of each
spacecraft evolve according to

α̇ = G(α)dR (8)

where G ∈ R6×3 is the well-documented GVE state transition matrix23 and dR is the perturbing
acceleration expressed in R. In GEO, perturbations caused by J2 gravity, SRP and third-body
gravity are of similar significance.24 Analytic models have been developed for the effects of J2 and
third-body gravity on the mean OE,25, 26 as have analytic models for the effects of J2 and SRP on the
ROE.21, 27 Spacecraft ballistic coefficients are dynamically modeled as constants within ARTMS.

A useful aspect of the ROE is that they provide geometric intuition regarding target relative
motion. As initially shown by D’Amico20 for near-circular orbits, there is a linear map between the
ROE and the target’s curvilinear position vector δr in the observer’s RTN frame. This was extended
to eccentric orbits22 by defining the eccentric ROE δα∗ = (δa, δλ∗, δe∗x, δe

∗
y, δix, δiy), which revert

to traditional ROE for eo ≈ 0. The resulting mapping is

δrR =

δrRδrT
δrN

 ≈ ro


δa− eo

2 δe
∗
x − δe∗

(
cos(νo − ϕ∗) + eo

2 cos(2νo − ϕ∗)
)

δλ∗ + δe∗
(
2 sin(νo − ϕ∗) + eo

2 sin(2νo − ϕ∗)
)

δi sin (νo + ωo − θ)

 (9)

where r is orbit radius, ν is true anomaly, and θ = ω + ν is true longitude. Subsequently, a second-
order mapping for eccentric orbits was developed,28 expressed as

δrR =

δrRδrT
δrN

 = ro

bR(θo)δα+ δα⊤BR(θo)δα

bT (θo)δα+ δα⊤BT (θo)δα

bN (θo)δα+ δα⊤BN (θo)δα

 (10)

where bi ∈ R6 are vectors containing the time-varying coefficients of the first-order mapping and
Bi ∈ R6×6 are triangular matrices containing the time-varying coefficients of the second-order
terms. Terms in bi and Bi are fully defined by Willis.28
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Figure 2 presents relative motion in R for small separations. Oscillatory motion produced by
target relative orbits is shown in black, possessing the same frequency as the orbit. Oscillatory
motion produced by orbit eccentricity is shown in red, acting at twice the frequency of the orbit.
δa and δλ∗ capture mean offsets in the radial and along-track directions respectively; magnitudes
of δe∗ and δi correspond to magnitudes of oscillations in the RT and RN planes respectively; and
phases of δe∗ and δi dictate the orientation and aspect ratio of the tilted ellipse in the RN plane. The
eccentricity of the observer’s orbit superimposes additional offsets and higher-frequency oscillations
in the RT and RN planes.

ARTMS NAVIGATION ARCHITECTURE

ARTMS is a self-contained navigation architecture that provides autonomous, distributed angles-
only navigation for multi-agent space systems.13 The following terminologies are adopted. “Ob-
server” refers to the spacecraft hosting the instance of ARTMS being discussed. A “remote ob-
server” is another spacecraft hosting ARTMS that is providing measurements over the inter-satellite
link (ISL). The “system” consists of all observers and all other relevant “targets”, which are space
objects tracked by observers. Each observer might only track a subset of the system and targets may
themselves be remote observers. Figure 3 presents an example (not to scale).

Figure 3: Illustration of ARTMS observers and targets. Not to scale.

A high-level overview of ARTMS is presented in Figure 4. It consists of three core software
modules: IMage Processing (IMP),14 Batch Orbit Determination (BOD)15 and Sequential Orbit
Determination (SOD).12 Data sources are the VBS, which provides time-tagged images to ARTMS;
the ISL, which communicates orbit estimates and bearing angle measurements between observers;
and the ground segment, which provides telecommands and maneuver plans. In this paper, it is
assumed GNSS measurements are unavailable.

The operation of each module is briefly described as follows. First, the IMP module uses VBS
images to produce batches of bearing angle measurements with corresponding uncertainties for all
detected targets in the FOV. The only prior information needed by IMP is a coarse estimate of the
observer’s absolute orbit at a single past epoch. Sample times for IMP images are typically 0.5-5%
of the orbit period. The BOD module uses IMP angle batches, and the aforementioned observer
orbit estimate, to compute state estimates for the observer and its targets. BOD is run once per
orbit. The SOD module uses the BOD estimate to initialize a UKF, which fuses measurements
from IMP and remote observers to refine the state estimates of the observer and its targets. Use
of multiple observers for distributed stereo vision greatly improves state observability. SOD then
provides updated state estimates to IMP to more efficiently assign new bearing angles to targets.
The SOD orbit estimate and IMP bearing angles are sent to the ISL, and subsequent BOD estimates

6



Figure 4: General architecture of ARTMS including external systems/data sources (dark gray),
software modules (green), and exchanged data (blue). GNSS inputs (when available) and ground
inputs are provided to all modules. Ground telemetry consists of all module outputs.

are used for fault detection in SOD and re-initializations in contingency cases. All modules may
utilize ground information when appropriate such as knowledge of planned maneuvers.

In this fashion, ARTMS is distributed and scalable to arbitrary system sizes. Furthermore, mod-
ules require almost no contact with ground-based resources. Novel algorithms self-initialize navi-
gation using a single external absolute orbit measurement per observer and modules take advantage
of additional information when available to enable autonomy. IMP, BOD and SOD algorithms are
described in more detail in the following, along with extensions to support navigation in GEO.

Image Processing

The objective of IMP is to produce batches of time-tagged bearing angle measurements to each
target using a coarse estimate of the observer’s orbit and images provided by the VBS.

First, a centroiding algorithm is used to simplify the image into a list of pixel cluster centroids.29

Centroids are converted to unit vectors in the VBS frame using a calibrated camera model. Next,
the Pyramid star identification algorithm30 is applied to remove stellar objects (SO) from the list
of vectors. Uncatalogued SO are detected as objects with unchanging inertial unit vectors between
images and camera hotspots are detected as objects with unchanging pixel coordinates.11 The VBS
attitude is computed from the pointing vectors to identified stars in the inertial and sensor frames
using the q-method.31 The remaining minimal set of inertial unit vectors corresponds to potential
targets and other unknown objects. An example image is provided in Figure 5.

If SOD is initialized, IMP applies single-hypothesis tracking. The SOD state estimate is used to
compute modeled bearing angles (αm, ϵm) and associated covariance region Σm ∈ R2×2 for each
target via an unscented transform. Subsequently, the Mahalanobis distance σm between modeled
and measured angles is used to assign measurements to known targets, with
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Figure 5: Example input image with point sources detected and identified by IMP as either target
spacecraft, stars, or unknown RSO.12

σm =

√
(α− αm, ϵ− ϵm)Σ−1

m (α− αm, ϵ− ϵm)⊤) (11)

Let σij denote the Mahalanobis distance between the i’th unidentified measurement and the mod-
eled measurement of the j’th tracked target. To minimize erroneous assignments, the i’th measure-
ment from the remote observer is assigned to the j’th target if three conditions are satisfied:

1) σij ≤ σmax 2)
σij

min
k ̸=i

σkj
≤ σmeas 3)

σij
min
l ̸=j

σil
≤ σmodel (12)

These conditions ensure 1) measurement i is close to modeled measurement j; 2) measurement i is
closer to modeled measurement j than all other measurements; and 3) modeled measurement j is
closer to i than all other targets. This paper applies σmax = σmeas = σmodel = 3.

If no a-priori relative orbit knowledge is available, IMP applies multi-hypothesis tracking (MHT),
and uses the novel Spacecraft Angles-only MUltitarget tracking System (SAMUS) algorithm to de-
tect target tracks in sets of unidentified measurements.14 SAMUS applies concepts of MHT32 in that
as measurements arrive, several simultaneous hypotheses are maintained for their association into
target tracks. MHT robustly converges towards the correct hypothesis over time as more information
becomes available by gating, scoring, and pruning propagated hypotheses. SAMUS achieves im-
proved precision and efficiency compared to naive MHT by leveraging domain-specific knowledge
to develop new kinematic scoring and trimming criteria. These criteria are derived from Equation
9, which maps OE and ROE to target relative position in R. In Equation 9, the only quickly-varying
terms are those which are functions of ν, whereas others vary slowly in the presence of perturba-
tions20 and are effectively constant on the timescales of image-to-image tracking. Target motion is
therefore periodic with known form and even if specific ROE are unknown, this kinematic model
can be leveraged to assess target tracks formed by successive measured unit vectors in R.
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The radial and cross-track components of Equation 9 can be fitted to track measurements and
used to assess track quality and predict upcoming measurements. Applying the first-order model to
measured bearing angles (α, ϵ) gives

[
ϵ
α

]R
≈ ro

ao

[
x1 − x2(cos(νo − x3) +

eo
2 cos(2νo − x3))

x4 + x5 sin(νo + ω − x6)

]
(13)

where x1,...,6 are scaled ROE equivalents in bearing angle space and r, a, ν, e, ω are provided by
the absolute orbit estimate. Thus, given at least three track measurements, x1,...,6 can be solved for
via least squares. Kinematic rules are then derived from Equation 9 to gate which hypotheses are
physically reasonable. Briefly, 1) track velocities must be below a set maximum, 2) track velocities
must be consistent over time, 3) tracks should generally not feature acute angles, 4) tracks should
turn in a consistent direction, and 5) new data must be close to the predicted measurement. Only
tracks which pass all rules are propagated, and tracks are subsequently scored on how well they
match expected kinematic behavior. Known target maneuvers can be assigned to tracks by matching
qualitative similarities between changes in x1,...,6 pre- and post-maneuver to expected changes in
the ROE from a state transition matrix.33

Image Processing Extensions

In the context of IMP, two difficulties are presented by GEO inspection and servicing. First, a-
priori state information may possess position uncertainties on the order of tens of kilometers (3σ).
Measurement assignment using fixed ambiguity thresholds becomes inconsistent or impossible, es-
pecially if targets are in proximity in the FOV. Large magnitudes of relative motion during ren-
dezvous may also violate standard kinematic gating thresholds; however, if thresholds are relaxed,
the hypothesis search space grows too large to be feasibly managed.

In response, a new hybrid tracking mode is introduced, in which SOD targets are allowed to be-
come associated with multiple track hypotheses. First, bearing angle uncertainty regions from SOD
are used as additional track gating criteria, to reduce the search space when kinematic rules are re-
laxed. Then, kinematic scoring over longer time periods is used to augment Mahalanobis-distance-
based assignment metrics, to increase robustness when state information is highly uncertain. At
each timestep, assigned measurements from the best hypothesis are passed to the filter. To prevent
rapid switching between hypotheses, a measurement is only passed to SOD if its hypothesis branch
has been the best-scoring for at least n1 images, and its score is better than the second-best by a fac-
tor of at least n2. This paper applies n1 = 3 and n2 = 2. In this fashion, SOD/SAMUS consensus
is used to aid performance. Figure 6 presents the sequence of operations for IMP tracking modes.

Figure 6: SAMUS algorithm sequence of operations.
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The second difficulty arises from rendezvous scenarios in which multiple targets (e.g. a refueling
depot and its customers) are in visual proximity. Their point spread functions (PSF) in images may
merge, leading to inaccurate, ambiguous or missing target measurements. Given the high sensitivity
of angles-only navigation to measurement errors34 it is vital to detect and manage such events.

Consider dij , the distance between modeled measurements for targets i and j. Define θjoin, an
angular distance below which PSF are likely to partially merge, and θsame, an angular distance below
which PSF are likely to completely overlap. The following conditions are applied:

1. If dij ≥ θjoin ∀ j ̸= i, proceed with normal measurement assignment.

2. If dij ≤ θsame, assign the same measurement to i and j (if one is suitable).

3. If θsame < dij < θjoin, do not assign a measurement to i or j.

Thresholds are specified based on camera properties and expected target angular sizes with θjoin >
θsame. This paper applies θjoin = 500′′ and θsame = 100′′. Figure 7 illustrates the three conditions.

Figure 7: Example measurement assignment scenarios for targets i and j.

Batch Orbit Determination

The BOD module must produce orbit estimates for the system with sufficient accuracy to ini-
tialize the SOD module, using only a single coarse estimate of the observer orbit and batches of
bearing angles to each target from the onboard VBS. State estimation is accomplished using a new
algorithm15 that applies the following procedure for each target.

First, a 1-D family of state estimates is computed for specified samples of δλ using iterative batch
least squares refinement, where the refined state consists of target ROE and the observer semimajor
axis. Usage of this sampling approach is informed by a system observability analysis: in swarms
and formation-flying scenarios, there is the underlying assumption of a weakly observable mode in
mean along-track separation,12 whereas for more general configurations (e.g. constellations) this
is not always the case. A typical choice is to divide the expected state space for δλ into 100-200
intervals in the positive and negative directions. It is important to minimize computation costs of
sampling and thus, the analytic dynamics models described previously are used when propagating
the refined state to each measurement epoch.

Second, the output state estimate is chosen as that which produces the least measurement resid-
uals. The measurement noise matrix for each measurement (denoted Rvbs) is then estimated using
the measurement residuals corresponding to the output state estimate. A conceptual illustration for
a single target is shown in Figure 8.
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Figure 8: Conceptual illustration of con-
verged BOD measurement residuals for
rejected versus selected state estimates for
specified δλ values.

Figure 9: Illustration of conditions in which
SOD measurement assignment criteria are satis-
fied (left-most figure) and conditions that violate
measurement assignment criteria (others).

Finally, the covariance for estimated state components Pest is computed via

Pest = S∗
est(Rvbs + SpriorPpriorS

T
prior)S

∗T
est (14)

where S∗
est is the pseudoinverse of the measurement sensitivity matrix for estimated state compo-

nents, Sprior is the measurement sensitivity matrix for any a-priori state information, and Pprior is the
uncertainty of a-priori state information. This formulation allows BOD to transition between do-
mains where uncertainty is driven by sensor performance versus errors in the a-priori information.

Batch Orbit Determination Extensions

Typical measurement collection periods for BOD are 1-2 orbits of the observer, which is not
always conducive to quickly evolving rendezvous scenarios. Furthermore, BOD applies linearized
models for state estimation, which can lead to inaccuracies and poor convergence when ROE are
large and e.g. the second-order effects of orbit curvature on measurements become apparent.

To address this, the use of fast initial relative orbit determination (IROD) methods is investigated
as a potential complement to the existing BOD module. The method explored here is that of Willis,28

which applies the second-order mapping from RTN position to the ROE presented in Equation 10.
Given only three sets of bearing angles (and their corresponding unit vectors in R), IROD can
be performed for a target of interest by solving the resulting polynomial system of equations for
the ROE. Willis also describes the ‘INSPEQTER’ algorithm as a suitable solver, which leverages
domain-specific solution properties to compute solutions in a highly efficient manner.

This method has only been applied in literature to scenarios using Keplerian dynamics without
Gaussian measurement noise, and its performance has not yet been quantified in the presence of
more realistic noise and dynamics models. In addition, it does not natively provide an accompanying
state uncertainty or indication of solution quality. Consequently, this paper proposes a sampling
approach in which input angles are sampled from expected Gaussian error distributions around each
true measurement, producing a set of output state samples which can be transformed into an IROD
mean and covariance. This process is illustrated in Figure 10. Sampling may be performed via
an unscented transform or in a Monte Carlo sense. When applying the unscented transform, the

11



three input measurements are concatenated into a mean vector y ∈ R6, with an associated diagonal
covariance matrix Y ∈ R6×6 dependent on sensor noise properties, to generate 13 sigma points.

Figure 10: Conceptual illustration of measurement error sampling (left) to generate initial ROE
covariances via INSPEQTER (right). Covariances are not to scale.

Sequential Orbit Determination

The SOD module continually refines orbit estimates and auxiliary state estimates of the observer
and its targets by seamlessly fusing measurements from all observers transmitted over the ISL. SOD
applies the bearing angle measurement model and numerical GVE dynamics model introduced ear-
lier within a UKF framework. The choice of a UKF with an OE and ROE state parametrization
provides crucial advantages. First, the weakly observable range to each target is primarily captured
by δλ in most relative motion geometries, with other ROE being strongly observable.22 This allows
ARTMS to maximize accuracy by applying separate state estimation techniques to different compo-
nents (as seen in BOD). Second, the UKF is able to incorporate nonlinearities in the dynamics and
measurement models and preserves higher-order moments in the probability distribution, to enable
angles-only observer and target state convergence without maneuvers. Third, OE and ROE states
vary slowly with time, which allows accurate numerical integration of the GVE with large timesteps
for efficient onboard orbit propagation.

Three additional features maximize performance. First, adaptive process noise estimation is used
to improve convergence speed and robustness to errors in the dynamics model.12 Second, the state
definition is organized to exploit the structure of the Cholesky factorization, reducing calls to the or-
bit propagator by almost a factor of two.35 Third, measurements from remote observers are assigned
to local targets for distributed stereo-vision. The observability of target relative states is greatly im-
proved when multi-observer measurement sharing is active, and furthermore, if the observer-target
system meets certain criteria,9, 36 the absolute orbits of system members become observable with
only bearing angles. However, care must be taken to prevent the ambiguities of assigning multiple
measurements to the same target or assigning the same measurement to multiple targets. Selection
criteria are developed based on Mahalanobis distance thresholds to a) match orbit estimates broad-
cast by remote observers to local orbit estimates of targets, and b) match modeled bearing angles
of local targets to measured bearing angles broadcast by remote observers.18 Unambiguous corre-
spondence must be achieved such that only one choice lies within a Mahalanobis assignment region
and no other choices lie within a Mahalanobis exclusion region. Figure 9 provides a conceptual
example for b).
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Sequential Orbit Determination Extensions

GEO scenarios present further challenges that must be addressed by the SOD module. First is that
RSO orbits are typically very close to equatorial, and operate near the zero-inclination singularity
present in Keplerian or quasi-nonsingular orbit parametrizations. To avoid numerical instability
in the UKF, ARTMS is extended to include the fully nonsingular OE and ROE states previously
defined, and implements the relevant GVE matrices, state transition models and state conversions.

Furthermore, SRP forces may have significant perturbative effects on observer and target orbits,
especially over longer time periods. However, the values of SRP ballistic coefficients may not nec-
essarily be well-known (especially for non-cooperative targets) and may vary over time. Incorrect
values provided to the filter a-priori will cause biases or divergences in estimated ROE. To eliminate
these errors and improve filter robustness, ballistic coefficients are instead estimated online within
ARTMS. Within the UKF, Bsrp and δBsrp values are appended to the system state vector, and are
included when generating sigma points for prediction and update steps. When each sigma point
orbit is later propagated, the numeric integration applies the corresponding sigma point ballistic
coefficient value. Observability of ballistic coefficients is verified via simulation.

SIMULATION SCENARIOS

Five simulation scenarios are developed to demonstrate autonomous angles-only navigation for
multiple agents in GEO. Initial conditions are given in Tables 1 and 2. Absolute orbits are specified
for a ‘chief’ observer and relative orbits are specified with respect to this observer.

Scenarios A and B present a rendezvous approach by a single observer spacecraft (S/C) towards a
target of interest, with two additional targets in the FOV. Scenario A considers a high-thrust maneu-
ver over two hours, whereas Scenario B considers a low-thrust maneuver over one day. Applications
include servicing, inspection or refueling of targets in GEO.

Scenarios C and D present detection and characterization of multiple target spacecraft by two
cooperative observers. Scenario C considers targets whose orbit states are coarsely known a-priori,
whereas Scenario D considers targets whose states are entirely unknown. Applications include
inspection and tracking of cooperative or uncooperative GEO targets.

Scenario E presents a refueling scenario in which three smaller spacecraft dock and refuel at a
mothership ‘depot’ in sequence over one day, via a series of pre-planned maneuver waypoints. It is
assumed targets cooperate with the depot over an ISL but do not actively cooperate with each other.

Simulation conditions for each scenario are presented in Table 3. The frequency of camera mea-
surements is modified depending on maneuver activity, and observers may actively or passively
track targets with the onboard VBS. ‘Active’ tracking implies modifying attitude to approximately
center known targets in the FOV, whereas ‘passive’ tracking implies consistent pointing of the
VBS boresight in the (anti-)velocity direction. Active tracking is applied when relative motion
is large. Target state estimates are either initialized via a-priori information from the ground, or
autonomously on-board using BOD.

Maneuvers are executed in Scenarios A, B and E. In Scenario A, a maneuver with δv = [−5.28,
5.39, 0.52] m/s is performed at simulation time t = 1 hour with a burn time of 2 hours. In Scenario
B, a maneuver with δv = [0, 0.18, 0] m/s is performed at t = 10 hours with a burn time of 20
hours. In Scenario C, each target spacecraft performs between 6-8 impulsive maneuvers during
rendezvous, docking and departure from the depot. Relative orbits are plotted in Figure 11.
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(a) Fast rendezvous to Target 1 (Scenario A) (b) Slow rendezvous to Target 1 (Scenario B)

(c) Target characterization (Scenarios C and D) (d) Target refueling sequence at depot (Scenario E)

Figure 11: Relative positions of targets with respect to S/C 1 (the origin) in the RT and RN planes.

Table 1: Chief spacecraft initial states for simulations.

Scenario Chief ID a (km) e i (◦) Ω (◦) ω (◦) M0 (◦) Bsrp

A 1 42014 0.00015 0.01 97.8 67.7 307.9 0.025
B 1 42159 0.00015 0.01 97.8 67.7 307.9 0.025

C, D 1 42164 0.00015 0.01 0.0 0.0 0.0 0.025
E 1 42164 0.00015 0.01 0.0 0.0 0.0 0.015

Data Generation

Ground truth positions and velocities of all spacecraft are obtained by numerically integrating
the GVE. Included perturbations are summarized in Table 4. Spacecraft are physically modeled
as smallsats with a mass of 250 kg and constant sun-facing cross-sectional area of 2.5 m2. The
refueling depot is modeled as a larger bus with a mass of 5000 kg and cross-sectional area of 30 m2.
Target visibility and visual magnitudes are computed using a model which takes into account the
observer-target-Sun phase angle and variations in reflected flux from different satellite surfaces.37

Eclipse and camera blinding periods are also modeled.

Measurements are synthesized from the ground truth with injected Gaussian noise as per Table
4. VBS images are generated using 3D vector graphics in OpenGL.38 Visual magnitudes, angles,
and proper motions of stars are obtained from the Hipparcos star catalog and objects within the
camera FOV (including RSO) are rendered using Gaussian PSF. Mismatches between known and
true camera parameters are modeled by adding Gaussian noise to PSF positions and Gaussian noise
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Table 2: Deputy spacecraft initial states for simulations.
Scenario Deputy IDs aδa (km) aδλ (km) aδex (km) aδey (km) aδix (km) aδiy (km) δBsrp

A 2, 3, 4 150, 150, 150 300, 600, 900 60, 60, 30 150, 150, 100 5, 10, -15 5, 10, -15 0
B 2, 3, 4 5, 5, 5 75, 150, 225 0.5, 1, 2 0.5, 1, 2 1, 2, -3 1, 2, -3 0
C 2, 3, 4 0, 0, 0 100, 200, 300 0, 0, 2 2, -2, 2 0, 0, 2 2, -2, 2 0
D 2, 3, 4 0, 0, 0 100, 200, 300 0, 0, 2 2, -2, 2 0, 0, 2 2, -2, 2 0
E 2, 3, 4 0.5, -0.5, 0.5 4.1, -5.1, 5.6 -1.9, 0.6, 1.4 0.5, 1.9, -0.5 -1, 0.3, 0.9 0.3, 1, -0.2 0

Table 3: Summary of simulation conditions.
Scenario Observer Simulation Attitude Number of Maneuver IMP Meas. SOD Dyn. Initialization A-priori State Error (3σ)

IDs Length Maneuvers Duration Frequency Step Size Method Position Bsrp

A 1 10 hrs Active 1 2 hrs 300 s 150 s Ground 10 km 30%
B 1 50 hrs Active 1 20 hrs 1200 s 600 s Ground 10 km 30%
C 1, 4 150 hrs Passive - - 1200 s 600 s Ground 3 km 30%
D 1, 4 150 hrs Passive - - 1200 s 600 s BOD 3 km 30%
E 1, 4 25 hrs Active 22 1 sec 300 s 150 s Ground 50 m 30%

is added to pixel intensities. Control errors for spacecraft attitude are also modeled, as are magnitude
and direction errors for executed maneuvers. After injected errors, centroiding errors, and attitude
determination errors, inertial bearing angle errors are approximately 15′′ (1σ). Future work will
explore integration of spacecraft 3D models into imagery when operating at close range.

Inputs are processed by ARTMS in the form of a multi-satellite simulation in MATLAB Simulink
and C++. Perturbations modeled within SOD are summarized in Table 4, and errors in a-priori target
state information are summarized in Table 3. BOD initialization occurs after 24 hours when used.
Adaptive process noise estimation is applied in SOD and empirical accelerations are not estimated.

Table 4: Dynamics models and measurement noise for simulations.

Model Perturbations Propagation Measurement Noise (1σ) Axes

IMP Keplerian (none) Analytic Image pixel intensity 1.5% -

BOD J2 gravity Analytic Image PSF position [5, 5]′′ [α, ϵ]

SOD

5x5 GRACE gravity model
Solar radiation pressure
with cannonball drag model
Third-body lunisolar gravity

RK4 integrator
150-600 s timestep

Attitude control [10, 10, 30]′′ [x̂V , ŷV , ẑV ]

Truth

60x60 GRACE gravity model
Solar radiation pressure
with cannonball drag model
Third-body lunisolar gravity

RK4 integrator
10 s timestep

Maneuver magnitude
Maneuver direction

2%
[2, 2, 2]◦

-
[x̂R, ŷR, ẑR]

Simulation Results

Figure 12 presents relative navigation results for Scenario A, where time t = 0 corresponds to
the initialization of SOD. The majority of position error occurs in the along-track direction which
is analogous to the weakly observable target range. Other components of target motion are more
observable and see correspondingly smaller errors. Despite large initial position uncertainties of
[10, 10, 10] km (3σ) in the [x̂I , ŷI , ẑI ] axes, tracking is robustly established and uncertainties are
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Table 5: Mean state error and 1σ state uncertainty at the end of the simulation period, for ARTMS
running on board S/C 1.

Scenario S/C rR rT rN vR vT vN Bsrp
ID (m) (m) (m) (mm/s) (mm/s) (mm/s)

C 1 −28± 38 −393± 1554 138± 140 1± 3 4± 4 −35± 33 -
D 1 263± 263 −759± 1894 11± 195 −8± 33 −38± 38 −14± 20 -
E 1 −4± 323 107± 1751 −4± 30 1± 5 0± 38 −1± 15 -

δrR δrT δrN δvR δvT δvN δBsrp
(m) (m) (m) (mm/s) (mm/s) (mm/s)

A
2 −6± 17 120± 205 0± 3 0± 3 1± 4 0± 1 -
3 18± 38 276± 286 5± 12 2± 6 −2± 6 −1± 1 -
4 22± 51 −407± 338 14± 26 6± 10 −2± 8 −2± 2 -

B
2 −1± 15 80± 175 −1± 3 −1± 3 0± 2 0± 1 -
3 0± 50 −33± 463 −2± 6 0± 4 0± 6 0± 1 -
4 −6± 88 19± 741 1± 8 0± 3 1± 10 0± 1 -

C
2 −1± 6 60± 138 1± 2 0± 1 0± 1 0± 1 3× 10−5 ± 3× 10−4

3 −3± 7 58± 253 2± 3 0± 1 0± 1 0± 1 −2× 10−5 ± 4× 10−4

4 −5± 14 71± 359 3± 4 0± 1 1± 1 0± 1 −7× 10−5 ± 4× 10−4

D
2 2± 6 234± 525 −3± 7 0± 1 0± 1 0± 1 −6× 10−6 ± 1× 10−4

3 −7± 16 472± 1065 4± 8 0± 1 1± 2 0± 1 7× 10−6 ± 3× 10−4

4 −7± 15 662± 1510 −5± 14 −1± 1 0± 1 0± 1 −4× 10−6 ± 4× 10−4

E
2 0± 2 −2± 9 0± 2 0± 1 0± 1 0± 0 -
3 −1± 22 2± 36 0± 2 0± 1 0± 3 0± 1 -
4 0± 2 0± 2 0± 1 0± 1 0± 1 0± 1 -

reduced to ∼1 km in target position by commencement of the maneuver. Targets are successfully
tracked throughout the maneuver period despite the presence of associated errors, with final state
uncertainty on the order of several hundred meters or 0.1% of target range. It was observed that esti-
mation of δBsrp coefficients during maneuvers causes some instability, because the filter is unable to
distinguish between dynamical changes caused by maneuver execution errors or ballistic coefficient
errors. It is therefore recommended to de-couple maneuver updates and Bsrp estimation.

Figure 12: Relative position errors and uncertainties in the RTN frame for S/C 1 (Scenario A).

As intersatellite range increases, the noise floor of the VBS corresponds to larger state uncertain-
ties. Thus, angles-only state uncertainties are somewhat proportional to range, and state uncertain-
ties in Scenario B are comparatively larger than in Scenario A. This is primarily due to the longer
simulation period during which the observer does not receive any external absolute orbit updates. In
the case of angles-only measurements, a single observer can only fully observe relative orbit states,
whereas multi-observer measurement sharing is required for absolute orbit observability.9, 36 The
observer’s absolute orbit estimate therefore slowly diverges throughout the simulation which has
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detrimental effects on its relative orbit estimates also. However, the degradation is slow enough that
(for example) a daily coarse absolute orbit update from the ground is sufficient to maintain strong
navigation performance. Overall, the low-thrust maneuver is successfully tracked.

Figure 13 presents relative navigation results for Scenario D after an autonomous BOD initial-
ization. The IMP module successfully tracks the three unknown targets in the field of view, and
the BOD module is able to successfully generate initial relative state estimates from IMP measure-
ment batches. Initial position uncertainties are on the order of 10 km, or 10-20% of target range.
Comparatively, Scenario C results are significantly improved due to their reduced initial position
uncertainty of 3 km. Augmentations to the BOD module are therefore proposed to enable more
responsive and robust navigation, such as inclusion of analytic SRP dynamics models to reduce dy-
namics uncertainty, or the addition of multi-observer BOD for enhanced angles-only observability.

Figure 13: Absolute position (top), relative position (bottom) and δBsrp (right) errors and uncer-
tainties in the RTN frame for S/C 1 (Scenario D).

Convergence in Scenarios C and D is aided by multi-observer measurement sharing, which also
allows estimation of the observers’ absolute orbits for long-term autonomous navigation in GEO.
Absolute orbit uncertainty is on the order of kilometers at steady state and may be further reduced by
the addition of more observers to the system or by leveraging more distinct observer measurement
baselines. Figure 13 demonstrates that the differential ballistic coefficients between the observer
and each target are also observable using bearing angles, and can be estimated to reduce orbit
state errors. The error spike at t = 80 hours in the rT and δrT estimates is due to an incorrect
measurement assignment by IMP when an unidentified star crosses the FOV. Although the resulting
state error is significant, it is soon recovered after new measurements from both observers.

State estimates for S/C 4 (the final spacecraft to refuel at the depot) are displayed in Figure 14
for Scenario E. State uncertainties are on the order of meters to tens of meters throughout, indicat-
ing that angles-only navigation can support safe rendezvous operations, if applied in concert with
additional sensors to aid docking at very close ranges. Maneuver execution errors cause initial un-
certainty increases, e.g. at t = 6 hours, but overall, maneuvers improve uncertainty over longer
time periods by aiding disambiguation of target range. State uncertainties are also somewhat pro-
portional to target range, as can be seen in the larger relative position uncertainty of S/C 3 towards
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Figure 14: Relative position errors and uncertainties (left) and relative distances (right) in the RTN
frame for S/C 4 (Scenario E). Maneuver blocks correspond to S/C 2, 3 and 4 as time advances.

the end of the simulation, as compared to the smaller uncertainties for S/C 1 (the depot).

Fast IROD Performance Analysis

In scenarios where responsive navigation is necessary, IROD estimates may be needed on shorter
timescales than the full orbit required by the existing BOD algorithm. For example, in Scenario A,
when initial states are highly uncertain, fast IROD may be used to more robustly identify targets in
the few hours before maneuvers occur. In Scenario D, when initial states are unavailable, it may
be used to provide range estimates for target tracks within IMP in a fast, computationally-efficient
manner for added robustness.

Four cases are selected for investigation, derived from Scenarios A, C and E but without ma-
neuvers. ROE1 applies δαQNS = [150, 300, 60, 150, 5, 5]⊤ km and features long target range
with significant relative motion. ROE2 applies δαQNS = [0, 100, 0, 2, 0, 2]⊤ km and features
medium range with little relative motion. ROE3 applies δαQNS = [0.5, 4.1,−1.9, 0.5,−1, 0.3]⊤

km and features short range with significant relative motion. Finally, ROE4 applies δαQNS =
[−5, 50, 100, 20,−100, 0]⊤ km and features medium range with significant relative motion.

Three sampling methods for generating an IROD mean and covariance via the INSPEQTER
algorithm are proposed. The first applies an unscented transform (UT) to generate sigma points
from the true measurement set y and sensor noise covariance matrix Y . The second uses Monte
Carlo samples (MC1), drawn from a Gaussian distribution N (y,Y ). Solution quality for either
method is dependent on the amount of measurement error already present y (which serves as the
mean about which samples are drawn). The third method (MC2) attempts to bypass this issue by
instead performing Monte Carlo sampling in time. Consider a VBS taking images every ts = 10
seconds, and denote tm as the period between input measurements in y ,with ts ≪ tm. Then, the
first Monte Carlo sample is made up of images from times t1 = [0, tm, 2tm] and the i’th sample
is made up of images from times ti = [(i − 1)ts, (i − 1)ts + tm, (i − 1)ts + 2tm]. This paper
assumes noise is uncorrelated between images such that measurement errors can be reduced via
averaging, though some correlation may be present in practice. Note that it has been shown that the
INSPEQTER method is able to remove constant biases from measurements, if present.28

Given that the shape and orientation of the relative motion ellipse is strongly observable, results
quality is primarily distinguished by the estimation of weakly observable δλ. Indeed, a primary
advantage of solving the second-order model of Equation 10 is that it provides a fixed δλ solution,
whereas the first-order model of Equation 9 does not. Thus, results are presented in the context
of δλ, with the goal of achieving δλ errors and uncertainties of less than 20% (approximately).
Full-force dynamics are applied to all simulations.
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Figure 15: δλ histograms for 200 Monte Carlo samples.

Figure 16: Scatter plots of solution residuals versus δλ errors for 200 Monte Carlo samples. Note
that not all residuals are visible in the center pair of plots, for readability.

Figure 15 presents histograms for output δλ solutions across 200 samples, using tm = 1 hr
and 1σ bearing angle noise σα,ϵ = [2, 2]′′. It is clear that for ROE1-3, the fast IROD method is
very likely to vastly over-estimate δλ, leading to a poor mean output. However, solution quality
is much improved for ROE4. This is due to the much larger δi for ROE 4 and resulting larger
magnitude of out-of-plane motion, which significantly aids angles-only observability. Figure 16
presents solution residuals across the same 200 samples. Although smaller residuals are likely to
correspond to smaller errors, there is also correspondence between magnitude of δλ and magnitude
of residuals, and the sample with the minimum residual is not necessarily best. Thus, residuals are
not in themselves a final indication of solution quality.

Figure 17 presents trends in δλ errors and uncertainties as σα,ϵ, tm and δi are varied, for ROE1
and ROE4. Several trends are apparent. First, uncertainties are broadly similar between the UT,
MC1 and MC2 sampling methods. However, the MC2 method tends to produce smaller errors, in-
dicating that it is able to somewhat reduce the effects of measurement noise. Second, the expected
behavior is generally observed, in that increasing noise decreases solution quality; increasing the
measurement period increases solution quality (because the effects of noise become proportionally
smaller compared to dynamical motion); and increasing δi increases solution quality and observ-
ability. Note that sampling is in some cases inordinately affected by very large outliers, and thus, it
is recommended to perform ‘sanity checks’ to filter out unreasonable samples.

BOD typically produces initial ranges uncertainties of <20%, and to achieve a similar quality
with the fast IROD method while taking advantage of small tm, low sensor noise of ≤2′′ is nec-
essary. The most consistent results are obtained with sub-arcsecond accuracy, which may require
specific telescope hardware to support initialization. Alternately, it may be possible to use coarser
sensing with 2-5′′ accuracy if the orbit of the target tracking satellite is designed to be slightly above
or below i = 0, thus possessing large δi compared to most GEO targets. The extreme sensitivity of
the method to noise is expected due to the comparative lack of measurement information compared
to BOD, which typically operates on 50-200 measurements. Furthermore, recall that the IROD dy-
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namics model is Keplerian, and results are therefore affected by dynamics errors also. Future work
will explore the addition of maneuvers and other dynamics to the model for increased generality.

Figure 17: Solution δλ error versus measurement noise, measurement period, and magnitude of the
relative inclination vector for Cases 1 (top) and 4 (bottom).

CONCLUSION

This research presents an architecture for autonomous, distributed, angles-only navigation of
multi-agent space systems in GEO, in support of satellite servicing and future space sustainability.
The Absolute and Relative Trajectory Measurement System (ARTMS) consists of three core algo-
rithms, each of which requires modifications to successfully operate in the GEO environment. The
image processing algorithm is extended with new tracking modes for improved robustness in the
presence of varying target separations and large state uncertainties. New batch orbit determination
algorithms enable initial relative orbit determination with shorter measurement arcs. Sequential
orbit determination algorithms are augmented with estimation of SRP ballistic coefficients.

ARTMS is verified via high-fidelity simulations of navigation in several target rendezvous and
tracking scenarios, including approach maneuvers, characterization of multiple unknown targets,
and close-range refueling. ARTMS is able to navigate during manuever periods and in the presence
of large initial state uncertainties, and converged relative position estimates display uncertainties of
<0.5% of target range. Observers are also able to detect and initialize navigation for previously
unknown targets, and may share measurements to achieve angles-only absolute orbit estimation and
autonomous long-term state convergence. SRP ballistic coefficients may also be estimated online
for additional robustness. New angles-only initial relative orbit determination methods requiring
only three measurements are investigated, and are shown to be suitable for fast target identification
if sensor noise is small or relative orbits have large inclination differences. Overall, results display
navigation performance suitable for supporting satellite inspection and servicing in GEO.

Future research areas include optimization of observer attitudes to ensure targets consistently re-
main in view when relative motion is large, treatment of unknown target maneuvers via uncertainty-
aware filtering, and fusion of additional measurement sources such as inter-satellite ranging to pro-
vide increased accuracy and precision in relevant scenarios.
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