
AAS 24-027

SPEED-UE-CUBE: A MACHINE LEARNING DATASET FOR
AUTONOMOUS, VISION-BASED SPACECRAFT NAVIGATION
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Graves§, Ossi Saarela¶, Reece Teramoto||, Kautilya Vemulapalli**, Simone
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Vision-based navigation is a pivotal technology for future on-orbit operations,
with Machine Learning (ML) approaches for pose estimation presenting a promis-
ing alternative to traditional computer vision techniques. Developing these ML algo-
rithms requires large datasets for training and validation. Additionally, the difficulty
of obtaining true spaceborne images drives the need for realistic, synthetic image
datasets. This work presents SPEED-UE-Cube, a new machine learning dataset for
pose estimation of a non-cooperative target to enable the commercial development
of ML algorithms for vision-based navigation . SPEED-UE-Cube builds on previous
datasets, such as the Spacecraft PosE Estimation Dataset (SPEED) but is rendered
using Unreal Engine (UE) and employs a 3U CubeSat as the target. It comprises
30,000 randomized training images and 1,186 sequential images of a rendezvous
trajectory between the target and a servicer spacecraft. The trajectory dataset is gen-
erated and evaluated using a new open-loop Rendezvous, Proximity Operations, and
Docking (RPOD) simulation architecture that can be used to evaluate a pose estima-
tion Convolutional Neural Network (CNN) online. Pose labels for the target Cube-
Sat with respect to the servicer accompany all images in the training and trajectory
datasets to facilitate supervised learning. The results from a comparative analysis
between the SPEED-UE-Cube training subset and SPEED and the evaluation of the
trajectory subset within the RPOD simulation framework indicate that SPEED-UE-
Cube is a more challenging dataset for pose estimation than SPEED, particularly
concerning the prediction of the relative orientation of the target.

INTRODUCTION

Autonomous, vision-based spacecraft navigation is a key enabler for future capabilities in areas
such as Rendezvous, Proximity Operations, and Docking (RPOD) and In-Space Servicing, Assem-
bly, and Manufacturing (ISAM) at scale. A critical step in vision-based navigation is determining
the target’s position and orientation, also known as its pose. Machine Learning (ML) algorithms
such as Convolutional Neural Networks (CNN), have been recently shown to accurately and effi-
ciently characterize the pose of a target spacecraft using images obtained with a monocular cam-
era.1–4 The low Size, Weight, Power and Cost (SWaP-C) requirements for monocular cameras
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combined with the high performance of these pose estimation CNNs make them an increasingly
attractive technology for future RPOD and ISAM missions.

However, developing and deploying these ML approaches requires large training and evalua-
tion datasets. The challenge of acquiring true spaceborne images also drives a reliance on syn-
thetic image datasets. Only a few such datasets exist today, such as the Spacecraft PosE Esti-
mation Dataset (SPEED5 and SPEED+6), the Satellite Hardware-In-the-Loop Rendezvous Trajec-
tory dataset (SHIRT),7, 8 the SPAcecraft Recognition leveraging Knowledge of space environment
(SPARK) dataset9 and the Unreal Rendered Spacecrafts On-Orbit (URSO) dataset,10 which provide
labeled synthetic and hardware-in-the-loop images as a surrogate of actual spaceborne imagery. Al-
though these datasets are publicly available, most are prohibited for commercial use, limiting the
development of ML algorithms in the commercial space sector.

This work presents SPEED-UE-Cube, a new commercially available machine learning dataset
for monocular pose estimation of a non-cooperative target. SPEED-UE-Cube addresses the grow-
ing interest in ML approaches for autonomous spacecraft navigation by increasing the amount of
synthetic spaceborne imagery available for training and evaluation. It was developed by the Space
Rendezvous Laboratory (SLAB) at Stanford University in partnership with MathWorks. SPEED-
UE-Cube differs from its predecessors, SPEED and SHIRT, in several ways beyond its commercial
availability. First, the images are rendered using Unreal Engine (UE) 5 instead of OpenGL, al-
lowing greater control over the space scene. Second, it employs a 3U CubeSat model created by
MathWorks as the target, deviating from previous datasets that employed a model of the Tango
spacecraft from the PRISMA mission.11 Figure 1 shows the CubeSat’s 3D CAD model. The Cube-
Sat has two extended solar panels and three antennae that provide limited structural asymmetry,
making it a realistic yet challenging target for ML pose estimation algorithms.

SPEED-UE-Cube consists of two distinct subsets: a randomly distributed training dataset of
30,000 images of a target spacecraft, and a trajectory dataset of 1,186 sequential images that model
a rendezvous scenario between the target and a servicer spacecraft. The training dataset is ran-
domized to capture a range of background, illumination conditions, and relative CubeSat posi-
tions and orientations. It is split into an 80:20 training/validation split. This work also presents a
comparative analysis of a spacecraft pose estimation CNN to verify the performance of the train-
ing dataset. It is implemented in MATLAB®* R2023b using the Deep Learning Toolbox™and is
trained and evaluated on SPEED-UE-Cube and SPEED. Conversely, the trajectory dataset is a se-
quential test set designed to evaluate pose estimation algorithms on realistic RPOD scenarios instead
of single, randomized images. It is generated and evaluated using an open-loop RPOD simulation
pipeline that can further evaluate the robustness of a pose estimation CNN on additional trajectories.
The training and trajectory datasets are publicly available at https://purl.stanford.edu/
hw812wb1641. The MATLAB implementation of the pose estimation CNN is also available at
https://github.com/tpark94/speed-ue-cube-baseline

The remainder of the paper is as follows. First, the dataset generation section provides details
about the UE scene and any rendering properties, followed by details on the pose labels for the
training dataset. Next, the performance analysis section shows the results from a pose estimation
CNN trained and evaluated on the training dataset and compares these results to those obtained with
SPEED. Then, the RPOD simulation section introduces the open-loop simulation framework used

*MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks
for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.
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Figure 1: A 3D model of the target CubeSat created by MathWorks in collaboration with SLAB.

to generate and evaluate the trajectory dataset before providing CNN results when evaluated on the
trajectory. Finally, the paper concludes with a contributions summary and describes how this work
will be extended regarding the dataset and RPOD simulation.

DATASET GENERATION

This section describes the rendering environment used to generate SPEED-UE-Cube and details
the training subset properties regarding the pose label distribution.

Unreal Engine Scene

Unlike the previous datasets developed by SLAB such as SPEED5 and SPEED+6 which used
OpenGL to render synthetic images, SPEED-UE-Cube uses Unreal Engine 5 as its renderer. OpenGL
rendered accurate images of a spacecraft such that the pixel intensity distributions of both OpenGL-
based synthetic and spaceborne images with identical pose labels matched with high accuracy.12, 13

This was achieved without high-fidelity physics-based rendering, allowing fast rendering speed.
Moreover, the real Earth images captured by the Himawari-8 geostationary (GEO) meteorological
satellite were inserted in the background for additional realism. This means it is impossible to con-
trol the appearance of the Earth background based on the satellite’s altitude and viewing direction.
However, the background affects ML datasets only marginally, since the goal of an ML algorithm
for pose estimation is to be agnostic to image backgrounds.

Compared to the OpenGL-based renderer for SPEED, UE can render a high-fidelity world with
intricate physically-based rendering models. Specifically, UE allows construction of a realistic space
scene with Earth, Sun and stellar backgrounds as it is a game engine developed with the goal of
realizing high Frames Per Second (FPS) and high-quality scenes .

To generate synthetic training data, it is necessary to use an Application Programming Interface
(API) to connect to the UE renderer. Depending on the version of UE, this can be a MathWorks,
Python, C++, or custom API. SPEED-UE-Cube adopted a C++ API to connect to UE 5.

Actors

The constructed scene is a 1/10 scale of the universe whose reference frame coincides with the
Earth-Centered Inertial (ECI) frame. It consists of several actors, essentially UE entities that can



be manipulated and moved around. These include the CameraActor, the DirectionalLight
which acts as the Sun, and various StaticMeshActors for the CubeSat, Earth, Moon, and stars.
Some of these actors are visualized in Figure 2. The high-resolution surface textures for the Earth
and its clouds are obtained from the NASA Blue Marble collection † ‡ § ¶ The cloud texture is
applied as a transparent material to a separate sphere mesh slightly larger than the Earth mesh.
Therefore, the clouds can be rotated around the Earth’s surface. The Earth also includes the UE
built-in SkyAtmosphere component|| to emulate realistic atmosphere effects such as Rayleigh
and Mie scattering.

Figure 2: The camera, CubeSat, Earth and Sun actors. This image depicts the scene as viewed from
the UE editor instead of a rendered scene via the camera actor for visualization purposes.

Camera Effects.

The camera is modeled as a Point Grey Grasshopper 3 with a Xenoplan 1.4/17mm lens. Specif-
ically, the camera has a 1920 × 1200 pixels resolution and the horizontal field of view (FOV) of
35.6◦. This is the same camera used to create SPEED5 dataset images. Ref. 5 provides more camera
model details.

Typically, the scenes rendered by game engines tend to prioritize a better gaming experience than
scientific accuracy. Therefore, it is important to model the camera physics accurately to emulate the
spaceborne imagery properly which is typically characterized by high contrast and low signal-to-
noise ratio (SNR). In this work, the field depth is adjusted based on the distance to the target when
capturing the scene through the camera actor. It is slightly perturbed when creating the training

†https://visibleearth.nasa.gov/collection/1484/blue-marble
‡Earth Topography Sources: Jesse Allen, NASA’s Earth Observatory, using data from the General Bathymetric Chart

of the Oceans (GEBCO) produced by the British Oceanographic Data Centre, Reto Stöckli, NASA Earth Observatory.
§Earth Color Map Source: NASA Earth Observatory images by Joshua Stevens, using Suomi NPP VIIRS data from

Miguel Romàn.
¶Cloud Texture Source: NASA Goddard Space Flight Center Image by Reto Stöckli. Enhancements by Robert Sim-

mon. Data and technical support: MODIS Land Group; MODIS Science Data Support Team; MODIS Atmosphere
Group; MODIS Ocean Group.

||https://docs.unrealengine.com/5.1/en-US/sky-atmosphere-component-in-unreal-engine/
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dataset to add some blurring effect due to miscalibrated depth of field. Additionally, the image is
post-processed in UE with built-in random film grain noise, chromatic aberration and vignette**.

Training Dataset Pose Labels

The training dataset comprises 30,000 RGB images with an 80:20 training/validation split. These
images were created by generating 30,000 ground-truth labels containing the metadata necessary to
render the images first, including the inter-spacecraft pose and the locations of the servicer’s camera,
Earth, Sun, and Moon.

The target’s relative position labels are created by uniformly sampling the distance along the z-
axis (i.e., camera boresight) within [1.5, 15] (m) and the position along the xy-axes (i.e., image
plane) such that the entire CubeSat fits within the image frame. Theoretically, the CubeSat would
still appear resolved beyond 15 m for the PointGrey camera model. However, heavy occlusion
due to shadowing makes it nearly impossible to identify its presence at extreme distances for a
wide range of incident light angles. Therefore, 15 m was chosen as an ad hoc maximum distance
representative of RPOD terminal phases. The relative orientation labels are randomly sampled from
the SO(3) space using the subgroup algorithm,14 similar to SPEED. The position and orientation
labels distributions are visualized in Figure 3.

For each image, the camera is placed at an arbitrary altitude randomly sampled from a range
between 700 km in Low-Earth Orbit (LEO) and Geostationary Orbit (GEO). It is important to ensure
that (1) the Earth does not block the Sun and that (2) the Sun is not in direct view of the camera
when placing the camera randomly in the UE scene. This is achieved by ensuring two conditions
on the camera’s absolute position and orientation:

1. The angle between the vectors from the Earth to camera (rE→C) and from the Earth to the
Sun (rE→S) can never be larger than 60◦, and

2. The angle between the camera boresight (ẑC) and the vector from the camera to the Sun
(rC→S) can never be smaller than 75◦.

The first condition ensures that the Sun is never blocked by the Earth and always illuminates the
CubeSat. Theoretically, this angle varies depending on the servicer’s altitude and can be larger than
90◦. However, the lack of Earth’s albedo light made it increasingly likely that the CubeSat would be

**https://docs.unrealengine.com/5.1/en-US/post-process-effects-in-unreal-engine/

Figure 3: Position (left) and orientation (right) label distributions for SPEED-UE-Cube.
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Figure 4: Earth (left) and Sun (right) normalized position distributions in the camera reference
frame. Note that +ẑC coincides with the camera boresight.

under-illuminated at larger angular separations. Therefore, 60◦ was chosen as an ad hoc maximum
angle between rE→C and rE→S . The second condition ensures that the Sun is always outside the
camera FOV. In fact, directly facing the Sun is not desired in real missions due to typical exclusion
requirements and potential damage to the camera. The minimum 75◦ angular separation is also an
ad hoc choice to ensure that the bare minimum of the CubeSat’s surface is reflected back to the
camera for visibility.

The training dataset is created while respecting the two conditions above. The first 15,000 images
are rendered without the Earth in the background by forcing it outside the camera FOV. Conversely,
the other 15,000 images are rendered forcing it inside the camera FOV. The dichotomy of the pres-
ence and absence of the Earth background is visualized in Figure 4 which shows the concentration
of the Earth’s normalized positions along the positive z-axis (i.e., the camera boresight). The figure
also shows the distribution of the Sun’s normalized positions which obey condition #2 (i.e., the Sun
vector is never within the 75◦ angle from the camera boresight). Figure 5 shows sample images from
the SPEED-UE-Cube training set depicting the variability in background, illumination conditions,
and distance to the target.

PERFORMANCE ANALYSIS

This section describes the pose estimation performance studies used to evaluate SPEED-UE-
Cube. The purpose of these studies was two-fold. First, they were used to understand the baseline
performance of a Convolutional Neural Network (CNN) architecture trained on SPEED-UE-Cube
compared to the similar, well-established SPEED dataset. Second, these analyses were used to
identify any unacceptable outliers in SPEED-UE-Cube that should be manually removed. Unac-
ceptable outliers were defined as any images where the CubeSat is completely occluded due to the
illumination conditions and cannot be visually identified. Such images are distinct from acceptable
outliers where the CubeSat is difficult to identify while some CubeSat features are still visible. The
latter serve as challenging cases retained in the dataset to evaluate the robustness of the pose esti-
mation algorithms. Overall, evaluating the outliers is important in ensuring that SPEED-UE-Cube
is aligned with the boundary conditions under which a pose estimation CNN could be reasonably



Figure 5: Sample images from SPEED-UE-Cube training dataset, which have been annotated with
the orbital altitude of the servicer spacecraft and the separation between the servicer and target
CubeSat. ‡,§, ¶

expected to operate.

MATLAB® Implementation

The training dataset was evaluated using the pose estimation pipeline introduced in Ref. 3. The
pipeline consists of first cropping the images around the highest confidence bounding box detected
using an object detection network (ODN). Then, the separate Keypoint Regression Network (KRN)
is used to regress the locations of 11 pre-defined CubeSat keypoints. In this work, the ODN lever-
ages the pre-trained YOLOv4 object detector from the Deep Learning Toolbox.15 The KRN closely
follows the original description, but its training hyperparameters follow those of the implementation
described in Ref. 6 which was designed for training on the SPEED+ dataset. Finally, a Perspective-
n-Point (PnP) algorithm-specifically EPnP16-is used to resolve the 6D pose of the CubeSat from
the regressed keypoints and known 2D-3D keypoint correspondence. This entire pose estimation
pipeline with the ODN, KRN, and EPnP will hereafter be referred to as ODN-KRN. The keypoints
selected for this project represent the four corners of the solar panels, the four corners of the Cube-
Sat body’s top face, and the endpoints of the three antennae, as shown in Figure 6. Figure 7 shows a
sample input image with the output of each step of the pipeline, namely the bounding box output of
the ODN, the keypoints outputted from the KRN, and the satellite wireframe projected based on the
estimated pose predictions from EPnP. Refs. 3 and 6 provide detailed information on ODN-KRN,
data augmentation, and other hyperparameters.

Both YOLOv4 and EPnP have pre-built MATLAB implementations as part of the Deep Learn-



Figure 6: Keypoints labeled on CubeSat wireframe.

ing Toolbox and OpenCV-MATLAB interface, respectively. These pre-built features were used
to perform the ODN and PnP steps of ODN-KRN. The KRN uses the pre-trained MobileNetv217

also available from the Deep Learning Toolbox. However, the prediction head was implemented
from scratch using custom depth-wise convolution layers.3 Its performance was compared to the
2022 PyTorch implementation6 after both implementations were trained on the SPEED dataset18

to verify the MATLAB implementation of the KRN with its custom layers . The readers are re-
ferred to Ref. 3 for the keypoints used for pose estimation of the Tango spacecraft. The data was
pre-processed for this experiment using the ground truth bounding box to crop the images around
the Region-of-Interest (RoI) instead of the ODN to compare the two KRN implementations directly.
The performance was evaluated using two metrics: translation error (ET) and orientation error (ER),
defined as12

ET = ∥t̃− t∥2 (1)

ER = 2arccos | < q̃,q > | (2)

where (̃t, q̃) represents the predicted relative position and quaternion vectors of the target with
respect to the camera, respectively, and (t,q) represent the corresponding ground truth values.

The KRN performance on SPEED for the PyTorch and MATLAB implementations is tabulated
in Table 1. The mean values show good agreement, indicating that KRN is implemented correctly
in MATLAB. The results are not identical due to different internal implementations of various op-
erations within PyTorch and MATLAB, random seeds, and different EPnP implementations.

Training Dataset Performance

The entire ODN-KRN was trained and evaluated on SPEED-UE-Cube once the MATLAB im-
plementation of the KRN was shown to be consistent with the original implementation. The errors



Figure 7: Sample input image (top left) with ground truth bounding box (top right), ground truth
keypoints (bottom left) and projected wireframe (bottom right). ‡,§, ¶

for SPEED-UE-Cube were compared to those for SPEED to understand the relative difficulty of
performing pose estimation on SPEED-UE-Cube.

The ODN and KRN were trained on the 80% training split of SPEED-UE-Cube, and the entire
pipeline was evaluated using the 20% training dataset validation split. The KRN was trained using
the same hyperparameters described in6 though adjusted for the different dataset size. For example,
since SPEED-UE-Cube is half the size of SPEED+, its training epoch is halved to 150 epochs for
the batch size of 48. The learning rate decay factor is likewise adjusted to 0.96 so that the final
learning rates at the end of the training are similar for both datasets.

The results are shown in Table 2 and include three additional metrics, the mean Intersection-over-

Table 1: KRN performance on SPEED. The translation and orientation errors are reported by the
mean and standard deviation for the dataset. Data was pre-processed using ground truth bounding
boxes for both models.

Implementation ET [m] ER [◦]

PyTorch 0.212 ± 0.275 2.942 ± 2.160

MATLAB 0.229 ± 0.490 2.980 ± 2.356



Table 2: ODN-KRN performance for SPEED and SPEED-UE-Cube Training Subset.

Dataset IoU ET [m] ER [◦] ẼT ẼR

SPEED 0.903 0.218 ± 0.612 3.004 ± 2.206 0.016 ± 0.017 0.303 ± 0.310

SPEED-UE-Cube 0.870 0.290 ± 3.269 5.183 ± 10.017 0.016 ± 0.108 0.437 ± 1.270

Union (IoU ), the normalized translation error (ẼT ) and the normalized rotation error (ẼR). The
IoU measures the area of intersection between the ground truth and predicted bounding box divided
by their union to quantify the error of the bounding boxes predicted by the ODN. The normalized
translation and rotation error are defined as

ẼT =
ET

d
(3)

ẼR =
ER

d
(4)

where d is the distance between the servicer and target normalized by the characteristic length of
the target, or

d =
∥t∥
l
. (5)

The normalized translation and rotation errors are important to account for the target distance
and size variations between SPEED and SPEED-UE-Cube. While SPEED-UE-Cube limits the
distance between the servicer and target to 15 meters, SPEED samples distances up to 50 meters.
Additionally, the Tango model used in SPEED is larger than the 3U CubeSat used in SPEED-UE-
Cube. The characteristic length for each target was taken as the width across the solar panels, 0.8
meters for Tango and 0.468 meters for the 3U CubeSat used in SPEED-UE-Cube.

The overall results indicate that it is slightly more difficult for ODN-KRN to perform pose estima-
tion on SPEED-UE-Cube than on SPEED, particularly regarding the relative orientation. Moreover,
the standard deviations indicate that the predictions on SPEED-UE-Cube suffer from more outliers
than on SPEED, even when the results are normalized. This phenomenon is visualized in Figure 8
which plots the translation and orientation errors for each image in the validation split for SPEED
and SPEED-UE-Cube as a function of the distance to the target. It does not appear that the outliers
in the orientation error for SPEED-UE-Cube are correlated with the distance to the target. This
indicates that these outliers could result from other factors such as the illumination conditions or
ambiguities due to the symmetry of the CubeSat.

Another consideration is that the KRN with its regression-based keypoint detection pipeline is
not a very robust pose estimation architecture. Therefore, it became necessary to verify whether the
degradation of KRN’s performance reported in Table 2 and Figure 8 is due to its own architectural
inferiority or outlier dataset samples. A different CNN architecture based on SPNv219 was trained



(a) SPEED

(b) SPEED-UE-Cube – Training

Figure 8: Translation (left) and orientation (right) errors from the ODN-KRN plotted for SPEED
(a) and the SPEED-UE-Cube training dataset (b).

on both SPEED and SPEED-UE-Cube to verify the integrity of the imagery. Specifically, the imple-
mented architecture is a variant of SPNv2 with ϕ = 3 and the heatmap prediction head. Additional
details about various architectural choices can be found in Ref. 19. SPNv2 replaces the keypoint
prediction step of the pose estimation pipeline only. Following the original SPNv2 implementation,
the input is cropped around the ground-truth RoI then resized to 256 × 256 pixels instead of using
bounding boxes predicted by an ODN. The training hyperparameters are modified from the original
implementation such that SPNv2 is trained for 20 epochs on SPEED-UE-Cube and 40 epochs on
SPEED using the AdamW optimizer.20 The learning rate is linearly warmed up to 0.001 during
the first epoch then decays every step according to the cosine annealing schedule for the rest of the
training.21

The performance of SPNv2 is shown in Table 3. SPNv2 showed significant improvement in all
error metrics and a reduction in the number of outlier images. This is unsurprising, since SPNv2
detects heatmaps associated with keypoints instead of directly regressing the numbers corresponding
to the location of those keypoints which is less robust. However, the same trend observed for KRN
is seen here. Namely, SPEED-UE-Cube suffers from more outliers than SPEED, especially for
the rotation errors as evidenced by the order of magnitude higher standard deviations for SPEED-
UE-Cube, even once normalized for the distance and target size. Overall, Table 3 verifies that the



degradation of CNN performance on SPEED-UE-Cube compared to SPEED is expected and not a
defect in KRN design.

Table 3: SPNv2 performance when trained and evaluated on SPEED-UE-Cube. Data were pre-
processed using ground-truth bounding boxes for both models.

Dataset ET [m] ER [◦] ẼT ẼR

SPEED 0.068 ± 0.085 0.972 ± 0.674 0.003 ± 0.002 0.109 ± 0.062

SPEED-UE-Cube 0.055 ± 0.144 1.252 ± 6.527 0.005 ± 0.004 0.098 ± 0.103

Finally, to distinguish the SPEED-UE-Cube outliers as either acceptable or unacceptable, the
images with the highest orientation errors returned by SPNv2, show in Figure 9, were manually
evaluated. All these outlier images were instances where Earth was outside of the camera’s FOV
and where the CubeSat antennae were at least partially occluded. However, these images were
determined to include enough visible features, such as the edges of the CubeSat, to be acceptable
and were therefore retained in the dataset.

RPOD SIMULATION

In order to ensure the robustness of any pose estimation CNN for future RPOD missions, it
is important that the algorithms be evaluated on sequential trajectory data in addition to single,
randomized images. To this end, this section first introduces an open-loop simulation framework
that serves as a testing environment for evaluating a pose estimation CNN online given a desired
RPOD scenario. Then, this section introduces the trajectory subset of SPEED-UE-Cube generated
and evaluated using this framework. Thus, the trajectory dataset demonstrates the feasibility of the
simulation framework and serves as a sequential test set to complement the randomly distributed
training dataset introduced earlier.

Open-Loop System Architecture

The open-loop simulation framework is authored in System Composer™, which enables system
and software architecture definition with native Simulink®integration. The framework consists
of three main components, shown in Figure 10. First, it requires a translational and rotational
spacecraft dynamics model for the servicer and target spacecraft. Given an initial orbit for each
spacecraft, this system must output the relative pose of the target with respect to the servicer, the
absolute pose of the servicer, as well as the orientation of the Earth and Sun in the inertial frame.
These outputs can then be provided to the second component, an Unreal Engine interface that takes
in the position and orientation of all actors in the scene and produces a rendered image. Finally, the
rendered image can be passed to the pose estimation CNN to predict the target pose. This process
can be repeated for the duration of an arbitrary RPOD trajectory and the errors in the predicted pose
can be used to evaluate the CNN’s performance.



Figure 9: Instances with the highest rotation error from SPNv2. Images are shown cropped closer
to the ground truth bounding box with predicted and ground truth keypoints.

Trajectory Dataset

The pipeline in Figure 10 was implemented using the SLAB Satellite Software (S3)22 to model
the spacecraft dynamics for the trajectory subset of SPEED-UE-Cube. The images were rendered
using the same C++ UE API used for the training dataset. Finally, the trajectory was evaluated on
both the ODN-KRN and SPNv2 pose estimation CNNs trained using the SPEED-UE-Cube training
subset.

RPOD Trajectory Generation

The rendezvous trajectory is simulated similarly to the SHIRT dataset.7 First, the absolute orbit



Figure 10: Open-Loop RPOD Simulation Architecture.

shown in Table 4 resembles that of SHIRT with the identical initial epoch at 2011/07/18 01:00:00
UTC. However, its inclination is modified to 67◦ so that the vector from the Earth to the Sun is
approximately normal to the orbital plane and that the CubeSat is always illuminated throughout
the trajectory. Table 4 also shows the initial quasi-nonsingular relative orbital elements (ROE)23

indicating that the target is in an e/i-vector-separated passively safe relative orbit.24 The trajectory
lasts for 1 full orbit with a 5 seconds measurement interval, resulting in 1,186 images total. The
evolution of the 3D relative Cartesian position vector in the servicer’s Radial-Tangential-Normal
(RTN) frame is visualized in Figure 11. The trajectory was simulated with S322 with high-fidelity
environmental force and torque models identical to those used for the SHIRT dataset. The only
difference is that the parameters for the target, such as mass and ballistic coefficients, are adjusted
to a 3U CubeSat. The force and torque models and the CubeSat parameters used to generate the
trajectory are summarized in Tables 5 and 6. However Section V of Ref. 7 contains additional
details.

Similar to SHIRT, the target’s initial relative attitude is set to qo = [1/
√
2 1/

√
2 0 0]⊤ which

rotates at 1◦/sec about its z-axis. However, unlike SHIRT, the camera’s viewpoint is manually fixed
to point at the CubeSat without attitude control.

Table 4: Initial mean absolute orbital elements of the servicer and relative orbit elements of the
target with respect to the servicer.

Servicer Mean OE Target Mean ROE [m]

a [km] e [-] i [◦] Ω [◦] ω [◦] M [◦] aδa aδλ aδex aδey aδix aδiy

7078.135 0.001 67 189.9 0 0 0 0 0 7 0 3

RPOD Trajectory Pose Estimation Results

The trajectory was evaluated on the ODN-KRN and SPNv2 pose estimation CNNs after render-
ing the images given by the RPOD trajectory using the same UE scene as for the training dataset.
The results in Table 7 show an increase in the translation and orientation errors as compared to the



Figure 11: Relative position in the servicer’s RTN frame.

Table 5: RPOD simulation force and torque models, recreated from Ref. 7.

Force Models

Geopotential field (degree x order) GGM05S (120 x 120)
Atmospheric density NRLMSISE-00
Solar radiation pressure Cannon-ball, conical Earth shadow
Third-body gravity Analytical Sun & Moon
Relativistic effect 1st order

Torque Models

Gravity gradient Analytical
Atmospheric density NRLMSISE-00
Solar radiation pressure Conical Earth shadow
Geomagnetic field (order) IGRF-13 (10)

validation split of the SPEED-UE-Cube training dataset shown in Table 2. Similar to the training
dataset, the performance across all error metrics improves when the trajectory dataset is evaluated
on SPNv2 instead, also shown in Table 7, showing good agreement with the SPEED-UE-Cube mean
values shown in Table 3. However, SPNv2 still shows an increase in standard deviations for trans-
lation and rotation errors when evaluated on the trajectory dataset, corroborating the ODN-KRN
performance trend. This increase may be attributed to the difference in the distribution of images
between the training and trajectory dataset. While the training dataset was distributed equally be-
tween Earth inside and outside the camera’s FOV, the trajectory dataset distribution is driven by
the spacecraft dynamics and the orbit properties instead. The Earth is outside of the camera’s FOV
more than half of the time for the given trajectory, which typically results in higher errors especially
when the target is oriented such that it can only be viewed edge-on, as shown by the instances of
highest rotation error in Figure 9.



Table 6: 3U CubeSat Parameters.

Force Model Evaluation

Spacecraft mass [kg] 4.5
Cross-sectional area (drag) [m2] 0.10
Cross-sectional area (SRP) [m2] 0.10
Aerodynamic drag coefficient 2.25
SRP coefficient 1.2

Torque Model Evaluation

Number of faces 4
Principal moment of inertia [kg·m2] diag(0.050, 0.038, 0.021)

Direction Cosine Matrix (DCM)
from body to principal frame

1 0 0
0 1 0
0 0 1


Magnetic dipole moment [A·m2] [0, 0, 5.677× 10−7]T

Figure 12 plots the individual components of translation and orientation errors from the ODN-
KRN and SPNv2 for the trajectory subset as a function of time. Here, the Euler angles computed
from the error rotation matrix represent the orientation error components. Importantly, the trans-
lation error is dominated by the z-component which coincides with the distance along the camera
boresight. This observation also agrees with the analysis of the original KRN performed in Ref.
3. Furthermore, Figure 12 shows how the number of outliers decreases significantly between the
ODN-KRN and SPNv2, highlighting the role of a robust CNN architecture in minimizing pose esti-
mation errors. While the purpose of the open-loop RPOD framework from Figure 10 is to evaluate
the CNN performance on its own, it is important to note that the outliers in Figure 12 can be further
reduced by incorporating a navigation filter, such as an unscented Kalman filter (UKF), into the
loop. In this case, the CNN predictions would serve as a course initialization into the filter. This ap-
proach has been shown to improve pose estimation performance even when the test data originates
from a different domain beyond synthetically rendered images.7

Overall, the trajectory dataset provides a challenging test set for SPEED-UE-Cube beyond the
randomly distributed training images and highlights the importance of evaluating pose estimation
algorithms on sequential data indicative of real-world RPOD scenarios.



Table 7: ODN-KRN and SPNv2 performance for trajectory subset of SPEED-UE-Cube. For
SPNv2, the data is pre-processed using ground-truth bounding boxes.

CNN IoU ET [m] ER [◦] ẼT ẼR

ODN-KRN 0.842 0.689 ± 7.002 13.212 ± 24.198 0.028 ± 0.236 0.643 ± 1.299

SPNv2 – 0.106 ± 0.691 1.846 ± 8.768 0.004 ± 0.024 0.088 ± 0.492

Figure 12: Translation (top) and orientation (bottom) error components for the trajectory subset of
SPEED-UE-Cube as a function of time when evaluated on the ODN-KRN and SPNv2. Translation
errors are given in the servicer’s camera frame, where the boresight is along the z-axis.

CONCLUSION

This work describes the generation of SPEED-UE-Cube, the Unreal Engine (UE)-based Space-
craft PosE Estimation Dataset (SPEED) of a 3U CubeSat. SPEED-UE-Cube was developed by
Stanford University’s Space Rendezvous Lab (SLAB) in partnership with MathWorks and includes
two distinct sub-sets: a training dataset composed of 30,000 images and a trajectory dataset that
consists of 1,186 images in a rendezvous scenario. All images are accompanied with the position
and orientation (i.e., pose) labels of the target CubeSat with respect to the camera. The report also
provides performance analyses of a Convolutional Neural Network (CNN) model when trained and
tested on the training subset of SPEED-UE-Cube. Specifically, the integrity of both SPEED-UE-
Cube and the MATLAB implementation of a CNN model was verified via a comparative study with
respect to a benchmark dataset and CNN model. The trajectory dataset was generated using a novel
Rendezvous, Proximity Operations, and Docking (RPOD) open-loop simulation that can be used
to evaluate a trained pose estimation CNN. The comparative analyses and evaluation of the trajec-
tory dataset via the RPOD framework reveal that SPEED-UE-Cube has more challenging outlier



images than the benchmark SPEED dataset. This observation was corroborated by the performance
analyses of two different CNN models.

In the future, the UE rendering capability will be extended to improve the realism of imagery
and better capture the visual characteristics inherent to spaceborne imagery. Furthermore, it will be
expanded to render additional outputs, such as semantic masks, depth fields, etc., to support a wide
range of spaceborne computer vision tasks beyond pose estimation. Additionally, the RPOD open-
loop simulation framework will be fully implemented and tested in MATLAB and Simulink to allow
for continuous evaluation of the CNN given an arbitrary RPOD trajectory. Finally, this open-loop
RPOD framework will be extended to a closed-loop simulation incorporating a navigation filter and
guidance and control.

Ultimately, SPEED-UE-Cube and the RPOD simulation framework presented in this work are
important tools that will enable the development and increase accessibility of robust autonomous,
vision-based navigation algorithms using machine learning.
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[6] T. H. Park, M. Märtens, G. Lecuyer, D. Izzo, and S. D’Amico, “SPEED+: Next-Generation Dataset for Spacecraft

Pose Estimation across Domain Gap,” 2022 IEEE Aerospace Conference (AERO), 2022, pp. 1–15.
[7] T. H. Park and S. D’Amico, “Adaptive Neural Network-based Unscented Kalman Filter for Robust Pose Tracking

of Noncooperative Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 9, 2023, pp. 1671–1688.
[8] T. H. Park and S. D’Amico, “SHIRT: Satellite Hardware-In-the-loop Rendezvous Trajectories Dataset,” Stanford

Digital Repository, 2022. Available at https://purl.stanford.edu/zq716br5462.
[9] A. Rathinam, V. Gaudilliere, M. A. Mohamed Ali, M. Ortiz Del Castillo, L. Pauly, and D. Aouada, “SPARK 2022

dataset : Spacecraft detection and trajectory estimation,” 2022.
[10] P. F. Proença and Y. Gao, “Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering,” 2020

IEEE International Conference on Robotics and Automation (ICRA), 2019, pp. 6007–6013.
[11] S. D’Amico, P. Bodin, M. Delpech, and R. M.Sc, PRISMA, pp. 599–637. 08 2013.
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