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ADAPTIVE AND DYNAMICALLY CONSTRAINED PROCESS
NOISE ESTIMATION FOR ORBIT DETERMINATION

Nathan Stacey∗, Simone D’Amico†

This paper introduces two new algorithms to accurately estimate Kalman filter pro-
cess noise online for robust orbit determination in the presence of dynamics model
uncertainties. Common orbit determination process noise techniques, such as state
noise compensation and dynamic model compensation, require offline tuning and
a priori knowledge of the dynamical environment. Alternatively, the discrete time
process noise covariance can be estimated through adaptive filtering. However,
current adaptive filtering techniques often use ad hoc methods to ensure the es-
timated process noise covariance is positive semi-definite and cannot accurately
extrapolate over measurement outages. Furthermore, adaptive filtering techniques
do not constrain the discrete time process noise covariance according to the un-
derlying continuous time dynamical model, and there has been limited work on
adaptive filtering with colored process noise. To overcome these limitations, a
novel approach is developed which optimally fuses state noise compensation and
dynamic model compensation with covariance matching adaptive filtering. The
adaptability of the proposed algorithms is a significant advantage over state noise
compensation and dynamic model compensation. In contrast to existing adaptive
filtering approaches, the new techniques are able to accurately extrapolate over
gaps in measurements. Additionally, the proposed algorithms are more accurate
and robust than covariance matching, which is demonstrated through two case
studies: an illustrative example and two spacecraft orbiting an asteroid.

INTRODUCTION

In orbit determination, there are always differences between the modeled and true spacecraft dy-
namics due to complex forces which cannot be modeled perfectly. These forces include gravity,
solar radiation pressure, atmospheric drag, third-body perturbations, tidal effects, and propulsive
maneuvers. Furthermore, reduced order dynamics models are often used for onboard navigation
due to computational limits. In Kalman filtering, dynamics modeling deficiencies are known as
process noise. Inaccurate process noise models can lead to large estimation errors as well as filter
inconsistency and divergence.1, 2 Modeling process noise for asteroid missions is especially chal-
lenging because the dynamical environment is poorly known a priori, and the process noise can
change significantly as the spacecraft transitions between high and low altitude orbits. It is increas-
ingly difficult when there is limited human intervention such as in the Autonomous Nanosatellite
Swarming (ANS)3–5 mission concept, which utilizes an autonomous swarm of small spacecraft to
characterize an asteroid. This paper presents two adaptive and dynamically constrained process
noise estimation algorithms that are applicable even when the dynamical environment is not known
a priori and the process noise is time-varying.
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Two common approaches for modeling process noise in orbit determination are state noise com-
pensation (SNC) and dynamic model compensation (DMC).6–14 These methods explicitly attribute
spacecraft state process noise to unmodeled accelerations, which is the difference between the mod-
eled and true accelerations. SNC treats the unmodeled accelerations as continuous time (CT) pro-
cess noise, which is assumed to be a zero-mean white Gaussian process with known covariance.
However, in reality unmodeled accelerations are correlated in time. DMC allows for time corre-
lation of the unmodeled accelerations by augmenting the state with empirical accelerations. The
dynamics of the empirical accelerations are frequently modeled as a first-order Gauss-Markov pro-
cess that treats the unmodeled accelerations as exponentially correlated in time. Modeling the time
correlation of the unmodeled accelerations allows DMC to provide higher orbit determination accu-
racy than SNC.12, 13, 15 DMC also provides a direct estimate of the unmodeled accelerations, which
may be desirable depending on the application.6, 13 On the other hand, SNC is simpler to implement
and less computationally expensive than DMC.

A major drawback of SNC and DMC is that time-intensive offline tuning is required to determine
the CT process noise covariance.6, 14–16 The tuned covariance is no longer optimal when the process
noise changes, which naturally occurs over time due to variations in space weather and spacecraft
properties. The process noise also changes whenever the orbit is altered as well as between peri-
apsis and apoapsis for eccentric orbits. Furthermore, SNC and DMC are poorly suited to scenarios
where the dynamical environment is not well known a priori because the offline tuning cannot be
accurately completed before the mission. Genetic model compensation (GMC) was developed to
adaptively tune the main diagonal of the CT process noise covariance for DMC through a genetic
optimization algorithm.16, 17 However, GMC is not widely used due to its complicated implementa-
tion and sensitivity to numerous hyperparameters.

Alternatively, the discrete time (DT) process noise covariance may be estimated through adaptive
filtering techniques, which are commonly divided into four categories: Bayesian,18–22 maximum
likelihood,23, 24 correlation,25, 26 and covariance matching (CM).27–29 An early survey on adaptive
filtering techniques is given by Mehra.2 A more recent and comprehensive survey is provided by
Dunı́k et al.30 with a focus on correlation methods. The various adaptive filtering approaches are
derived under different assumptions and have diverse limitations. For example, some techniques are
only applicable to linear time invariant systems.25, 28 Often, ad hoc methods are used to ensure the
DT process noise covariance is positive semi-definite (PSD). These ad hoc methods include truncat-
ing terms,31, 32 setting each diagonal element of the process noise covariance equal to its absolute
value,29, 33 finding the nearest positive semi-definite matrix in the Frobenius norm sense,7, 32, 34 and
using the previous estimate of the DT process noise covariance if the current estimate is not PSD.28

Adaptive filtering approaches also vary significantly in their computational cost. CM techniques
are widely used because they are computationally efficient and simple to implement. Since many
other adaptive filtering algorithms are not computationally tractable for typical spacecraft onboard
processors, several authors have explored the use of CM for orbit determination.7, 27, 29, 32

However, there are limitations to directly applying current adaptive filtering techniques to orbit
determination. For instance, ad hoc methods used in adaptive filtering to ensure the DT process
noise covariance is PSD are not necessarily appropriate for orbit determination and can lead to
biased estimates of the DT process noise covariance. Adaptive filtering techniques also have a
limited ability to extrapolate over measurement outages where the DT process noise covariance may
be significantly different from previous values. Additionally, existing adaptive filtering approaches
estimate the DT process noise covariance directly without constraining the estimate according to the
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underlying CT dynamical model. Consequently, the estimated DT process noise covariance may not
be realizable given that the process noise is ascribed to CT unmodeled accelerations. Finally, in orbit
determination the process noise is often highly correlated in time. However, there has been limited
work on adaptive filtering for systems with colored process noise,35 which Dunı́k et al.30 recently
identified as a necessary area of future research in adaptive filtering.

This paper overcomes the aforementioned limitations of SNC, DMC, and adaptive filtering by
optimally fusing SNC and DMC with CM through a constrained weighted least squares optimiza-
tion. This yields two novel, adaptive, and dynamically constrained process noise techniques called
adaptive SNC (ASNC) and adaptive DMC (ADMC). The adaptability of the proposed algorithms
is a significant advantage over SNC and DMC. Additionally, the developed techniques are more
accurate than CM because they are dynamically constrained and avoid common ad hoc methods for
ensuring the DT process noise covariance is PSD. In particular, ADMC can provide more accurate
estimation than CM and ASNC for systems with colored process noise. In addition to Earth-based
missions, ASNC and ADMC are well suited to asteroid missions such as ANS3–5 where the dynam-
ical environment is poorly known a priori, the process noise is time-varying, and there is limited
human intervention. Another potential use for ASNC and ADMC is to tune the process noise co-
variance in advance for missions that will use either SNC or DMC.

The following section provides background on SNC, DMC, and CM. The next section describes
how SNC and DMC are each optimally fused with CM through a constrained weighted least squares
minimization to yield ASNC and ADMC. This includes a derivation of the weighting matrix used in
the least squares minimization as well as discussion on efficiently solving the optimization problem.
In the subsequent section, the advantages of ASNC and ADMC are demonstrated through an illus-
trative example of a particle moving in one dimension. The benefits of the developed techniques are
further substantiated in the penultimate section through a more realistic and challenging scenario of
two spacecraft orbiting an asteroid. Finally, conclusions are presented based on the results of the
two case studies, and future work is outlined.

BACKGROUND

State Noise Compensation

In orbit determination, the dynamical model is often linearized such that the state dynamics can
be represented as a linear time-varying system subject to process noise described by6

ẋ(t) = A(t)x(t) + Γ(t)ε(t) (1)

Here A is the plant matrix, Γ is the process noise mapping matrix, ε is the CT process noise, and
x is the system state, which contains either a Cartesian or orbital element spacecraft state. For a
linear system, the only sources of spacecraft state process noise are unmodeled accelerations and
numerical error. In SNC, the process noise is attributed entirely to unmodeled accelerations since
they generally create orders of magnitude more process noise than numerical error. The unmodeled
accelerations are described by ε, which is modeled as a zero-mean white Gaussian process.6, 33 The
realization of each ε is an acceleration, and the covariance of ε is given by

E[ε(t)ε(τ)T ] = Q̃(t)δ(t− τ) (2)

where δ(·) is the Dirac delta function. The solution to Eqn. (1) can be written as

xk = Φkxk−1 +wk (3)
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where xk is the state at time step k, Φk = Φ(tk, tk−1) is the state transition matrix (STM) that
propagates the state over the measurement update interval from time tk−1 to time tk, and

wk =

∫ tk

tk−1

Φ(tk, τ)Γ(τ)ε(τ)dτ (4)

is the DT process noise. It is easily shown that w is uncorrelated in time and that wk ∼ N (0,Qk)
where the DT process noise covariance is6, 29

Qk =

∫ tk

tk−1

Φ(tk, τ)Γ(τ)Q̃(τ)Γ(τ)TΦ(tk, τ)Tdτ (5)

In SNC, Q̃ is assumed constant and is tuned offline. To facilitate tuning, the elements of ε are gen-
erally assumed to be independent such that Q̃ is diagonal.6, 15, 29 The DT process noise covariance
is used in the Kalman filter time update of the formal covariance which is given by

Pk|k−1 = ΦkPk−1|k−1ΦT
k + Qk (6)

Here, Pk|k−1 is the time updated formal covariance at time step k, and Pk−1|k−1 is the measure-
ment updated formal covariance at time step k − 1.

Dynamic Model Compensation

In reality, the unmodeled accelerations are correlated in time. DMC takes this into account by
augmenting the state vector with empirical accelerations, which are also referred to in literature as
ficticious or compensative accelerations.16 Although higher order models may be used,14 empirical
accelerations are often modeled as a first-order Gauss-Markov process given by6, 12

ȧe(t) = −βae(t) + ε(t) (7)

which is a linear stochastic differential equation known as a Langevin equation.16 Here ae is a
vector containing three orthogonal empirical accelerations. Again, ε is a zero-mean white Gaus-
sian process whose covariance is Q̃. The matrix Q̃ is assumed constant, and both Q̃ and β are
determined through offline tuning. To facilitate tuning, it is typically assumed that the empirical ac-
celerations are independent from one another such that Q̃ and β are diagonal.12, 13, 15, 16 The offline
tuning can be performed manually through trial and error15 or by fitting the empirical acceleration
autocovariance model to sample accelerations.14 Alternatively, β can be estimated as part of the
state. However, when estimating β the performance of DMC is sensitive to the modeled process
noise covariance of β, which is tuned offline.13 After determining Q̃ and β, the DT process noise
covariance Q is computed through Eqn. (5) and used in the time update of the formal covariance
matrix as shown in Eqn. (6). Note that Φ and Γ are different for DMC and SNC since DMC
augments the state with empirical accelerations.

Under the previously stated assumptions, the solution to Eqn. (7) is6

aei(t) = e−βi(t−t0)aei(t0) +

∫ t

t0

e−βi(t−τ)εi(τ)dτ (8)

where aei is the ith component of ae, εi is the ith component of ε, and βi is the ith element of the
main diagonal of β. The first term in Eqn. (8) is deterministic and is included in the filter dynamics

4



model. The second term is stochastic with a mean of zero and is taken into account through the DT
process noise covariance. The autocorrelation function of each empirical acceleration is given by6

E[aei(t)aei(τ)] = Ψ(τ, τ)e−βi(t−τ) (9)

where

Ψ(τ, τ) = E[aei(τ)aei(τ)] (10)

= aei(t0)2e−2βi(τ−t0) +
Q̃diagi

2βi
(1− e−2βi(τ−t0)) (11)

Here, Q̃diagi is the ith element of the main diagonal of Q̃. It can be seen from Eqn. (9) that each
empirical acceleration aei is exponentially correlated in time, and the inverse of βi is the correlation
time. The degree of autocorrelation is determined by the choice of Q̃diagi and βi.6 For a finite
value of Q̃diagi and βi = 0, the model in Eqn. (8) reduces to a random walk process. On the other
hand, the model approaches a zero-mean Gaussian white noise sequence as βi →∞. Modeling the
time correlation of the unmodeled accelerations allows DMC to achieve greater estimation accuracy
than SNC when optimal values of Q̃ and β are used.12, 13, 15 The direct estimate of the unmodeled
accelerations may also be useful for improving the dynamical model in post-flight analyses.6, 13

However, like SNC the required offline tuning makes it difficult to use DMC when the dynamical
environment is poorly known a priori or the process noise is time-varying.

Covariance Matching Adaptive Filtering

Many CM techniques have been proposed to adaptively tune the measurement noise covariance,
R, and the DT process noise covariance, Q.2, 29 Here, some commonly used CM techniques for
estimating Q are derived. First, consider the linear time-varying system described by Eqn. (3) with
DT measurements given by

zk = Hkxk + νk (12)

where Hk is the measurement sensitivity matrix, and νk is the measurement noise. It is assumed
that wk and νk are zero-mean white Gaussian sequences with constant covariances E[wiw

T
j ] =

Qδij and E[νiν
T
j ] = Rδij respectively where δij is the Kronecker delta function. The pre-fit

measurement residual or measurement innovation at time step k is denoted by

∆z
k = zk −Hkx̂k|k−1 (13)

= Hk(xk − x̂k|k−1) + νk (14)

where x̂k|k−1 is the mean state estimate at time step k taking into account all the measurements
through time step k − 1. The theoretical measurement innovation covariance is

Sk = E[∆z
k∆

zT

k ] (15)

= HkPk|k−1HT
k + Rk (16)

For an optimal Kalman filter, an unbiased empirical estimate of the measurement innovation covari-
ance is given by Ŝk = ∆z

k∆
zT

k .

The Kalman filter measurement update equation of the formal covariance can be written as

Pk|k = Pk|k−1 −KkSkK
T
k (17)
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where Kk = Pk|k−1HT
kS−1

k is the Kalman gain. Substituting Eqn. (6) into Eqn. (17) and solving
for Qk yields

Qk = Pk|k −ΦkPk−1|k−1ΦT
k + KkSkK

T
k (18)

Under the previous assumption that the DT process noise covariance is constant, Qk can be es-
timated using a sliding window of length N by setting the theoretical measurement innovation
covariance equal to its empirical value which yields

Q̂k =
1

N

k−1∑
p=k−N

(
Pp|p −ΦpPp−1|p−1ΦT

p + ∆x
p∆xT

p

)
(19)

Here,
∆x
k = Kk∆

z
k (20)

is the state innovation at time step k. Eqn. (19) was originally derived by Myers and Tapley,29, 33

with the difference being that here it is assumed that the DT process noise is known to be zero-mean.
Interestingly, Fraser32 shows that maximum likelihood estimation (MLE) can also be used to obtain
Eqn. (19) while Mohamed and Schwarz31 use MLE to derive a very similar result.

An obvious shortcoming of Eqn. (19) is that Q̂k may not be PSD. In order to be directly used in
a Kalman filter, each Q̂k must be guaranteed PSD to be a valid covariance matrix and avoid losing
the positive definiteness of the formal covariance in Eqn. (6). In practice, ad hoc methods are used
to ensure that Q̂k is PSD. In the original derivation of Eqn. (20), Myers and Tapley29, 33 suggest
setting the diagonal of Q̂k equal to its absolute value. However, this results in a biased estimate
and does not guarantee that Q̂k is PSD. The most common approach is to assume that the first two
terms in Eqn. (19) are negligible at steady state. Under this assumption, Eqn. (19) reduces to31, 32

Q̂k =
1

N

k−1∑
p=k−N

∆x
p∆xT

p (21)

which ensures Q̂k is PSD. However, steady state conditions only guarantee that Pp|p = Pp−1|p−1,
which is not a sufficient condition for Pp|p −ΦpPp−1|p−1ΦT

p = 0. For a stable system, Pp|p is
larger than ΦpPp−1|p−1ΦT

p at steady state, and Eqn. (21) underestimates Q. System instability
has the opposite effect and leads to an overestimate of Q. More rigorously, a sufficient condition
for the first two terms in Eqn. (19) to add to zero is for the filter to be at steady state and the
STM to be identity. Generally, the STM of an orbital element state remains close to identity for
longer time steps than a Cartesian state because orbital element states vary more slowly in time.
However, if the estimated state also contains force model parameters or the spacecraft is in a highly
perturbed orbit, the STM may only be close to identity for very small time steps, even for or-
bital element states. Moreover, the measurement rate may be limited by measurement availability
or computational resources. Another common assumption is that Kk( 1

N

∑k−1
p=k−N ∆z

p∆
zT
p )KT

k

can replace 1
N

∑k−1
p=k−N ∆x

p∆xT

p in Eqns. (19) and (21) if the filter is at steady state such that
Kp = Kk ∀ k −N ≤ p < k. Depending on the dimensionality of the state and measurement vec-
tors, it may be more computationally efficient to estimate the process noise covariance using either
the measurement innovations, ∆z, or state innovations, ∆x.7 Note that CM has a single tunable
parameter, which is the length of the sliding window. This parameter should be chosen based on
how quickly Q is expected to vary in time. A longer sliding window provides a more accurate esti-
mate of Q when it is approximately constant. On the other hand, a shorter sliding window provides
quicker adaptation of a time-varying Q.31
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There are several drawbacks to directly applying the aforementioned CM adaptive filtering tech-
niques to orbit determination. First, the STM is often not close to identity and Eqn. (21) results
in a biased estimate of the DT process noise covariance. Second, CM cannot accurately extrapo-
late the DT process noise covariance over a gap in measurements. As can be seen in Eqn. (5), a
long measurement update interval due to a measurement outage will likely have a DT process noise
covariance that is significantly different from previous shorter measurement update intervals given
the same fidelity filter dynamics model. Depending on the measurement type and mission scenario,
measurement outages may be long and frequent as is often the case in angles-only relative naviga-
tion.36 Third, the aforementioned CM techniques do not explicitly take into account that process
noise is due to CT unmodeled accelerations. Eqn. (21) can result in any PSD Q̂k, and there is no
guarantee that a PSD Q̃ exists that relates to Q̂k through Eqn. (5). Lastly, to the authors’ knowl-
edge there has been no work on CM adaptive filtering for systems with colored process noise. These
shortcomings are overcome by two novel techniques presented in the following section.

ADAPTIVE AND DYNAMICALLY CONSTRAINED PROCESS NOISE ESTIMATION

This section describes how CM can be optimally combined with either SNC or DMC to over-
come the limitations of the individual techniques. As illustrated in Figure 1, this results in two
novel, adaptive, and dynamically constrained process noise algorithms called ASNC and ADMC.
Unlike SNC and DMC, the proposed techniques are adaptive and well suited for scenarios where
the process noise is time-varying and the dynamical environment is poorly known a priori. Further-
more, ASNC and ADMC are more accurate than CM because the first two terms in Eqn. (19) are
not neglected and the estimated process noise covariance is constrained according to the underlying
CT dynamical model. ADMC is able to achieve additional accuracy over CM and ASNC when
the measurement rate and accuracy are sufficient to enable accurate tracking of the unmodeled ac-
celerations. The proposed techniques are also able to accurately extrapolate the DT process noise
covariance over measurement outages. The following two subsections describe how CM is opti-
mally fused with SNC and DMC through a constrained weighted least squares minimization. In the
next subsection, the weighting matrix used in the least squares optimization is derived. The final
subsection describes how the weighted least squares problem can be efficiently solved.

Constrained Weighted
Least Squares

ASNC and ADMC Shaded – Updated Based on 
Conference Proofs, Lighter Background Blocks

Adaptive Dynamic 
Model Compensation 

(ADMC)

Covariance Matching 
(CM)

Adaptive State 
Noise Compensation 

(ASNC)

State Noise Compensation 
(SNC)

State of the Art New Techniques

Dynamic Model Compensation 
(DMC)

Figure 1: Conceptual block diagram description of ASNC and ADMC.
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Adaptive State Noise Compensation

Without loss of generality, the estimated state can be written as

x = [xTs x
T
p ]T (22)

where xs is a vector comprising the estimated spacecraft state, and xp is a vector containing all
other estimated parameters. Considering the state ordering in Eqn. (22), the DT process noise
covariance can be written in block matrix form as

Q =

[
Qss Qsp

QT
sp Qpp

]
(23)

where Qss is the DT process noise covariance of the spacecraft state, Qpp is the DT process noise
covariance of the other estimated parameters, and Qsp is the cross covariance. It is assumed that the
CT process noise covariance Q̃ is constant over each measurement update interval. Consequently,
Eqn. (5) becomes

Qk =

∫ tk

tk−1

Φ(tk, τ)Γ(τ)Q̃kΓ(τ)TΦ(tk, τ)Tdτ (24)

Due to the structure of Eqn. (24), Qk is guaranteed to be PSD if Q̃k is PSD.

At each time step, ASNC finds the PSD Q̃ that minimizes the difference in a weighted least
squares sense between the elements of the spacecraft state DT process noise covariance Qss ob-
tained through Eqn. (24) and the corresponding CM estimate obtained from Eqn. (19). Since
both the SNC modeled Qss and the corresponding CM estimate are symmetric only the unique el-
ements, which are contained in the lower triangular portions of the matrices, need to be fitted. The
half-vectorization vech(·) indicates a vector composed of stacking the lower triangular elements of
a matrix column-wise, which in this paper is also denoted by the superscript vech. For example,

M =

[
M11 M12

M21 M22

]
⇒ vech(M) = Mvech = [M11 M21 M22]T (25)

In Eqn. (24), the DT process noise covariance Qk is linear in Q̃k. To reduce computation time,
Q̃ is assumed diagonal in this work. Under this assumption, Qvech

ssk
can be expressed as

Qvech
ssk

= XkQ̃
diag
k (26)

where the vector Q̃diag
k is the main diagonal of Q̃k. The matrix Xk is a function of Φ, Γ, and

the length of the measurement update interval. To construct Xk, it is necessary to compute the
integral in Eqn. (24), which can always be done numerically. It is also straightforward to compute
the integral analytically for linear time-invariant systems and some linear time-varying systems. At
each time step, the adaptively tuned value of Q̃diag is found by solving the constrained weighted
least squares minimization

arg min
Q̃diag

(XkQ̃
diag − Q̂vech

ssk+1
)TW−1

k (XkQ̃
diag − Q̂vech

ssk+1
) subject to Q̃diag ≥ 0 (27)

Here Wk is the theoretical covariance of Q̂vech
ssk+1

, which weights the solution of Eqn. (27) more
heavily towards components of Q̂vech

ssk+1
that are known with more certainty. The inequality con-

straint in Eqn. (27) ensures Q̃ is PSD. The matrix Q̃k+1 is set equal to the diagonal Q̃ that solves
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the optimization in Eqn. (27). Then Qk+1 is computed through Eqn. (24), which accurately adapts
the DT process noise covariance according to the length of the measurement update interval. This
appropriately enlarges the DT process noise covariance when the measurement update interval is
large compared to previous update intervals due to a measurement outage. Any measurement up-
date interval corresponding to a measurement outage should be excluded from the sliding window
average shown in Eqn. (19) to avoid biasing the estimate of Q̃. Note that the time index of Q̂vech

ss

in Eqn. (27) is k+ 1 in order to estimate Q̃ using the most recent available data. When constructing
Q̂vech
ssk+1

from Eqn. (19), the sliding window average includes data at time step k, which is available
since the estimated Q̃ is not used to compute Q until time step k + 1. Like CM, the length of the
sliding window is the only tunable parameter in ASNC. This parameter should be chosen based on
how quickly the process noise covariance is expected to vary in time.

Adaptive Dynamic Model Compensation

In ADMC, the state is augmented with empirical accelerations. Without loss of generality, the
state and corresponding DT process noise covariance can be written as

x = [xTs a
T
e x

T
p ]T , Q =

Qss Qse Qsp

QT
se Qee Qep

QT
sp QT

ep Qpp

 (28)

where Qee is the DT process noise covariance of the empirical accelerations. In ADMC, Q̃ is
estimated at each time step by solving the minimization in Eqn. (27). In this equation, Xk is
different when using ADMC or ASNC since Φ and Γ are altered when the state is augmented with
empirical accelerations. Although Qss, Qse, and Qee are all linear functions of Q̃ in Eqn. (24),
only the CM estimate of Qss is used in Eqn. (27) to estimate Q̃ because simulations show that
it is detrimental to include CM estimates of Qee and Qse. This is probably due to the significant
difference between the true dynamics of the unmodeled accelerations and the modeled empirical
acceleration dynamics shown in Eqn. (7).

For ADMC, solving Eqn. (27) at each time step leads to oscillations in Q̃. These oscillations
likely occur because Eqn. (27) does not take into account how a change in Q̃ affects the formal co-
variance of the empirical accelerations which in turn influences the time updated formal covariance
of the spacecraft state at the following time step. This creates a one time step delay in the effective
formal uncertainty added to the spacecraft state due to the empirical accelerations. The oscillations
in the estimate history of Q̃ can be smoothed by utilizing a forgetting factor, α, which has similarly
been used for CM.32 The filter can then be implemented as

Q̃k = (1− α)Q̃k−1 + αQ̃∗k (29)

where Q̃∗k is the diagonal matrix that minimizes Eqn. (27), and 0 < α ≤ 1 is a selected constant.
The value of α is a tunable parameter that provides greater smoothing for smaller values. The range
0.01 ≤ α ≤ 0.05 has been effective for the case studies presented in this paper and can be used as
a guideline. After calculating Q̃k through Eqn. (29), Eqn. (24) is used to compute Qk+1 under the
assumption that Q̃k+1 = Q̃k. Like ASNC, this accurately adapts the DT process noise covariance
according to the length of the measurement update interval.
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Weighting Matrix Derivation

This section derives the least squares weighting matrix Wk, which is the theoretical covariance
matrix of Q̂vech

ssk+1
. The sample variance of each element of Q̂k+1 as shown in Eqn. (19) is simply

equal to the sample variance of each element of 1
N

∑k
p=k−N+1 ∆x

p∆xT

p since the other terms in
the equation are known constants. Both Kailath37 and Mehra2 provide proofs that the measurement
innovations, ∆z, are a zero-mean white Gaussian process for an optimal Kalman filter at steady
state. Therefore, it is apparent from Eqn. (20) that each ∆x

k is normally distributed because it is a
linear combination of normally distributed random variables. Applying the expectation operator to
Eqn. (20) also reveals that each ∆x

k is zero-mean. Furthermore, assuming that the filter is at steady
state such that the Kalman gain is constant, it is easily shown that ∆x is uncorrelated in time by

E[∆x
t ∆xT

τ ] = KE[∆z
t∆

zT

τ ]KT (30)

= 0 ∀ t 6= τ (31)

since E[∆z
t∆

zT
τ ] = 0 ∀ t 6= τ .2, 37 Note, Myers and Tapley state the assumption that ∆x is not

correlated in time in the original derivation of Eqn. (19).29, 33 The theoretical covariance of ∆x
k is

Σk = E[∆x
k∆xT

k ] (32)

= KkSkK
T
k (33)

Now two identities are employed to derive W. First, the covariance of two sums of random
variables is given by

Cov

 ni∑
i=1

Xi,

nj∑
j=1

Yj

 =

ni∑
i

nj∑
j

Cov(Xi, Yj) (34)

whereXi and Yj are random variables. Second, Isserlis’ theorem states that for normally distributed
random variables X1, ..., X4,

E[X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X1X4]E[X2X3] (35)

Using these two identities, the covariance matrix of Q̂vech
ssk+1

can be constructed from

Cov(Q̂k+1ij
, Q̂k+1mn) = Cov

 1

N

k∑
p=k−N+1

∆x
pi

∆x
pj
,

1

N

k∑
p=k−N+1

∆x
pm∆x

pn

 (36)

=
1

N2
Cov

 k∑
p=k−N+1

∆x
pi

∆x
pj
,

k∑
p=k−N+1

∆x
pm∆x

pn

 (37)

=
1

N2
Cov

k∑
p=k−N+1

Cov(∆x
pi

∆x
pj
,∆x

pm∆x
pn) (38)

=
1

N2

k∑
p=k−N+1

(E[∆x
pi

∆x
pj

∆x
pm∆x

pn ]− E[∆x
pi

∆x
pj

]E[∆x
pm∆x

pn ]) (39)

=
1

N2

k∑
p=k−N+1

(ΣpimΣpjn + ΣpinΣpjm) (40)
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Applying Eqn. (34) to Eqn. (37) and recalling the assumption that ∆x is uncorrelated in time yields
Eqn. (38). The identity in Eqn. (35) can be applied to Eqn. (39) to yield Eqn. (40).

If W is approximated as diagonal, it can be expressed as

Wk =
1

N2

k∑
p=k−N+1

Wp (41)

where

W = diag(vech(Σ)) (42)

Σ = Σ◦2ss + Σdiag
ss ΣdiagT

ss (43)

Here, diag(·) denotes a square diagonal matrix whose main diagonal is the vector inside the paren-
thesis. The matrix Σss is the theoretical covariance of the portion of the state innovation corre-
sponding to the spacecraft state, which is a submatrix of Σ. For a six dimensional spacecraft state
and the state orderings shown in Eqns. (22) and (28), Σss ∈ R6×6 is the first six rows and columns
of Σ. The vector Σdiag

ss is the main diagonal of Σss. The Hadamard power, ◦, denotes an element-
wise power. For example, A = B◦2 indicates that Aij = B2

ij . If the filter is at steady state such that
Σp = Σk ∀ k −N < p ≤ k, Eqn. (41) reduces to

Wk =
1

N
Wk (44)

Note that the factor of 1
N2 in Eqns. (40) and (41) and the factor of 1

N in Eqn. (44) can be dropped
since a constant factor does not change the solution of the least squares minimization in Eqn. (27).

Constrained Weighted Least Squares Solution

The ASNC and ADMC algorithms are summarized in Table 1. On line four, Q̃ is estimated
through a constrained weighted least squares optimization, which approximates the maximum like-
lihood estimate. Given a linear system as shown in Eqns. (3) and (12) and assuming an optimal
Kalman filter with constant Q, Eqn. (19) provides an unbiased estimate of the DT process noise co-
variance.29, 33 According to the Central Limit Theorem, the probability distribution of each element
of the last term in Eqn. (19) approaches a normal distribution as the length of the sliding window
increases. Therefore, the weighted least squares solution obtained through Eqn. (27) approaches
the maximum likelihood estimate of Q̃ as the length of the sliding window increases.

Table 1: Summary of the ASNC and ADMC algorithms.

1: Use CM to compute Q̂ssk+1
using Eqn. (19)

2: Calculate Σk through Eqn. (33)

3: Compute Wk using Eqns. (41-43)

4: Determine Q̃∗k by solving the optimization in Eqn. (27)

5: For ADMC calculate Q̃k through Eqn. (29), and for ASNC Q̃k = Q̃∗k

6: Set Q̃k+1 = Q̃k

7: Compute Qk+1 using Eqn. (24)
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The optimization in Eqn. (27) is a quadratic program with a non-negativity constraint on the
optimization variables. In general, this optimization can be efficiently solved using active set or
interior point methods,38–41 and applicable solvers are readily available in various programming
languages. However, Eqn. (27) can be solved with a significant reduction in computation time
when W is approximated as diagonal, the spacecraft state is represented by Cartesian coordinates,
and the CT process noise ε is expressed in the same frame as the spacecraft state. Under these
conditions, each element of Q̃diag can be solved for independently without any matrix inversions
or decompositions. This computationally efficient solution is described in the remainder of this
subsection for both ASNC and ADMC.

Adaptive State Noise Compensation. Consider the state shown in Eqn. (22) where the spacecraft
state is represented by Cartesian coordinates as

xs = [rT vT ]T (45)

Here r and v are the spacecraft position and velocity vectors respectively expressed in an inertial
frame. Recall the corresponding DT process noise covariance in block matrix form shown in Eqn.
(23). To avoid the computational cost of numerically evaluating Eqn. (24), an analytical solution
derived by Myers33 can be utilized which is given by

Qssk =

[
1
3∆t3Q̃k

1
2∆t2Q̃k

1
2∆t2Q̃k ∆tQ̃k

]
(46)

when the CT process noise ε is expressed in the same frame as the spacecraft state. Here ∆t =
tk − tk−1 is the length of the measurement update interval. Although never explicitly stated by
Myers13, 29, 33, Eqn. (46) is only an approximate solution to Eqn. (24). This approximation assumes
the process noise does not perturb the state enough to change the modeled accelerations over the
measurement update interval. Eqn. (46) more closely matches the true solution of Eqn. (24) as ∆t
decreases. Notice that each element of Qss is a function of a single element of Q̃ in Eqn. (46).
Assuming W is diagonal, the optimization in Eqn. (27) can be written as

minimize
Q̃diag

3∑
i=1

(X(i)Q̃diagi − b(i))TW(i)−1(X(i)Q̃diagi − b(i)) subject to Q̃diag ≥ 0 (47)

where Q̃diagi is the ith element of Q̃diag and

X(i) =

1
3∆t3
1
2∆t2

∆t

 , b(i) =

 Q̂k+1i,i

Q̂k+13+i,i

Q̂k+13+i,3+i

 , W(i) = diag

 k∑
p=k−N+1

 Σpi,i

Σp3+i,i

Σp3+i,3+i

 (48)

The objective function in Eqn. (47) is the sum of three independent quadratic functions which are
each a function of a single optimization variable. Consequently, each element of Q̃diag can be
solved for independently by finding the unconstrained solution and setting any negative elements
equal to zero. The solution to the optimization in Eqn. (47) can therefore be written as

Q̃diagi = max
(

0,
X(i)TW(i)−1b(i)

X(i)TW(i)−1X(i)

)
(49)

where W(i)−1 can be computed as an element-wise inverse because it is a diagonal matrix. Note
that Eqn. (49) is an exact solution of the optimization shown in Eqn. (47) and is computationally
efficient because it does not require any matrix inversions or matrix decompositions. The estimated
value of Q̃ computed through Eqn. (49) is used to calculate Qssk+1

through Eqn. (46).
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Adaptive Dynamic Model Compensation. Consider the state and corresponding block matrix DT
process noise covariance as shown in Eqn. (28) where the spacecraft state is represented with Carte-
sian coordinates expressed in an inertial frame as shown in Eqn. (45). In this case it is straigthfor-
ward to compute an exact analytical solution of the integral in Eqn. (24). This was first demonstrated
by Cruickshank16 who showed the spacecraft state DT process noise covariance given by Eqn. (24)
can be written as6, 16, 17

Qssk =

C1,1 ◦ Q̃k C2,1 ◦ Q̃k C3,1 ◦ Q̃k

C2,1 ◦ Q̃k C2,2 ◦ Q̃k C3,2 ◦ Q̃k

C3,1 ◦ Q̃k C3,2 ◦ Q̃k C3,3 ◦ Q̃k


C1,1i =

∆t3

3β2
i

− ∆t2

β3
i

+
∆t

β4
i

(1− 2e−βi∆t) +
1

2β5
i

(1− e−2βi∆t)

C2,1i =
∆t2

2β2
i

− ∆t

β3
i

(1− e−βi∆t) +
1

β4
i

(1− e−βi∆t)− 1

2β4
i

(1− e−2βi∆t)

C3,1i =
1

2β3
i

(1− e−2βi∆t)− ∆t

β2
i

e−βi∆t (50)

C2,2i =
∆t

β2
i

− 2

β3
i

(1− e−βi∆t) +
1

2β3
i

(1− e−2βi∆t)

C3,2i =
1

2β2
i

(1 + e−2βi∆t)− 1

β2
i

e−βi∆t

C3,3i =
1

2βi
(1− e−2βi∆t)

when β and Q̃ are diagonal matrices, and the CT process noise ε is expressed in the same frame
as the spacecraft state. Here C1,1, . . . ,C3,3 ∈ R3×3 are each a diagonal matrix, and C1,1i and βi
refer to the ith diagonal element of the matrices C1,1 and β respectively. The Hadamard product ◦
is used in Eqn. (50) to denote element-wise multiplication. For example, A = B ◦C indicates that
Aij = BijCij . Similar to ASNC, each element of Qss is a function of only a single element of Q̃.
Approximating W as diagonal, the optimization in Eqn. (27) can be rewritten as Eqn. (47) where
b(i) and W(i) are defined in Eqn. (48) and

X(i) = [C1,1i C2,1i C2,2i ]
T (51)

The solution of Q̃ given by Eqn. (49) is used to compute Qssk+1
through Eqn. (50).

CASE STUDY I - PARTICLE IN ONE DIMENSION

This section demonstrates the benefits of the developed algorithms over SNC, DMC, and CM
through a linear system since linearity is assumed in the development of each of these techniques.
Note that a similar example is used by several authors to delineate SNC and DMC.6, 16, 17 Consider
a particle moving along the x-axis with an initial position x0 and velocity ẋ0. The particle is subject
to an unknown perturbing acceleration in the x-direction given by

ap = cos
(π

5
t
)

m/s2 (52)

A Kalman filter is used to estimate the particle position and velocity over 240 s. Range and range-
rate measurements are taken from the origin to the particle every 0.1 s and are corrupted by zero-
mean white Gaussian noise with standard deviations of 2 m and 0.1 m/s respectively. Note that for
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this one dimensional system, Q̃ is a scalar. CM as described by Eqn. (21) as well as ASNC and
ADMC are each utilized with a sliding window of 30 time steps, which is a 3 s interval. Adaptation
of the process noise covariance does not commence until the 31st filter call when the entire slid-
ing window is filled. The performance of each considered process noise technique is characterized
through Monte Carlo simulations where the initial 1-σ formal uncertainties provided to the filter in
position and velocity are 1.8 m and 150 mm/s. In each simulation, the measurements are indepen-
dently corrupted, and the initial error in position and velocity is randomly sampled according to the
initial formal covariance provided to the filter. For DMC and ADMC, the empirical acceleration
is initialized as zero. To reduce the memory required by ASNC and ADMC, Eqn. (44) is used to
approximate the weighting matrix. This simplification provides nearly identical performance to the
case when the weighting matrix is computed through Eqn. (41).

Adaptive State Noise Compensation

The estimated state is given by
x = [x ẋ]T (53)

The plant matrix, process noise mapping matrix, STM, and measurement sensitivity matrix are

A =

[
0 1
0 0

]
, Γ =

[
0
1

]
, Φ(t, t0) =

[
1 ∆t
0 1

]
, H =

[
1 0
0 1

]
(54)

Since this is a linear time invariant system, it is straightforward to analytically evaluate the integral
in Eqn. (24) to determine an exact expression for the DT process noise covariance, which is given
by6

Qk = Q̃k

[
1
3∆t3 1

2∆t2
1
2∆t2 ∆t

]
(55)

ASNC adaptively tunes Q̃ at each time step by solving the weighted least squares optimization in
Eqn. (27). The estimated value of Q̃ is then used to compute Qk+1 through Eqn. (55). This equa-
tion illustrates how ASNC constrains the DT process noise covariance according to the underlying
CT dynamical model, which assumes Q̃ is constant over the measurement update interval. The
constraint on the DT process noise covariance can be seen more clearly by analyzing its eigenvalue
decomposition. The eigenvectors and the ratio of eigenvalues of Q are fixed. The chosen value of Q̃
only scales the magnitudes of the eigenvalues of Q. Therefore, the shape and orientation of the 1-σ
uncertainty ellipse associated with Q are fixed, and the chosen value of Q̃ only scales that ellipse.

Adaptive Dynamic Model Compensation

For ADMC, the estimated state is augmented with a single empirical acceleration in the x-
direction. The new state vector is given by

x = [x ẋ ae]
T (56)

The plant matrix and process noise mapping matrix are

A =

0 1 0
0 0 1
0 0 −β

 , Γ =

0
0
1

 (57)
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The parameters β and α are set to 0.005 s-1 and 0.02 respectively for this case study. The STM and
measurement sensitivity matrix are

Φ(t, t0) =

1 ∆t 1
β∆t+ 1

β2 (e−β∆t − 1)

0 1 1
β (1− e−β∆t)

0 0 e−β∆t

 , H =

[
1 0 0
0 1 0

]
(58)

Evaluating Eqn. (24) yields

Qk = Q̃k

C1,1 C2,1 C3,1

C2,1 C2,2 C3,2

C3,1 C3,2 C3,3

 (59)

Note that C1,1, . . . , C3,3 are scalars for this one dimensional system and are defined in Eqn. (50).
ADMC adaptively tunes Q̃ at each time step by solving Eqn. (27). The solution to Eqn. (27), Q̃∗k,
is used to compute Q̃k+1 through Eqn. (29), which is then used to calculate Qk+1 through Eqn.
(59). As was the case with ASNC, the eigenvectors and ratio of eigenvalues of Q are fixed due to
the underlying CT dynamical model, which assumes Q̃ is constant over the measurement update
interval. The shape and orientation of the 1-σ uncertainty ellipsoid associated with Q as shown in
Eqn. (59) are fixed, and the chosen value of Q̃ only scales that ellipsoid.

Results

Figure 2 shows the estimation mean absolute error (MAE) when using SNC, DMC, ASNC, and
ADMC as a function of the initial guess of Q̃. The MAE when process noise is not modeled and
when using CM is also shown in Figure 2 for reference. Each MAE is computed over the last
45 s of simulation and averaged over 1000 Monte Carlo simulations. As expected, not modeling
process noise leads to filter inconsistency and large estimation error. SNC and DMC perform well
when an optimal value of Q̃ is used. However, when the value of Q̃ is suboptimal the estimation
errors become large, and the filter can become inconsistent. Interestingly, DMC is more robust
than SNC to a poor choice of Q̃.6 CM maintains filter consistency, but has large position errors.
Remarkably, ASNC and ADMC maintain filter consistency and achieve 80% lower position error
than CM regardless of the initial value of Q̃. ADMC provides a 20% reduction in velocity error over
ASNC because the measurement rate is sufficiently high and the measurements are accurate enough
for the filter to track the unmodeled acceleration well. Acceleration tracking and filter convergence
plots are shown in Figures 4 and 5 in the appendix. The average run time per filter call when using a
fixed process noise covariance was 46 µs for a MATLAB implementation on a 4 GHz Intel Core i7-
6700 processor. Utilizing CM, ASNC, and ADMC respectively incurred an additional 25%, 74%,
and 79% increase in computation time.

CASE STUDY II - FORMATION FLYING ABOUT ASTEROID

This section further validates the developed process noise techniques and demonstrates their per-
formance by applying them to the autonomous navigation of two spacecraft orbiting the asteroid 433
Eros. Eros is utilized as the target asteroid because accurate shape and gravity models are available
from the NEAR mission which ended in 2001.42–44 More recent asteroid missions such as OSIRIS-
REx45 and Hayabusa246 demonstrate the space community’s continued interest in asteroids. There
is a focus on asteroids for several reasons including science, mining, and planetary defense.47–50

Due to light time delay and limited ground-based resources such as NASA’s Deep Space Network,
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(a) Position (b) Velocity (c) Acceleration

Figure 2: MAE in position, velocity, and acceleration for different process noise techniques as a function of
the initial value of Q̃. The units of Q̃0 are m/s3/2 for SNC and m/s5/2 for DMC.6

there have been efforts to increase spacecraft autonomy for asteroid missions.4, 51–54 The proposed
process noise techniques enhance spacecraft autonomy and are well suited for the challenges of as-
teroid missions such as limited a priori knowledge of the dynamical environment and time-varying
process noise.

An unscented Kalman filter (UKF)55 is used to estimate the Cartesian states of the chief and
deputy spacecraft through interspacecraft radio-frequency range and range-rate measurements as
well as spacecraft camera pixel measurements of optical navigation (OpNav)52, 53, 56 features on
the asteroid surface. This is consistent with the recently proposed ANS mission architecture.3, 4

The performance of ASNC and ADMC as well as the CM technique given by Eqn. (21) are each
characterized through 1000 Monte Carlo simulations. In each simulation, the measurements are in-
dependently corrupted by zero-mean Gaussian white noise, and the initial estimate error in position
and velocity is randomly sampled according to the initial formal covariance provided to the filter.
The empirical accelerations are initialized as zero for ADMC. Each simulation lasts for four orbit
periods where the orbit period is approximately 20.9 hours.

Reference Truth

The reference truth spacecraft orbits are generated through high-fidelity numerical integration
including the effects of the gravity field of Eros up to degree and order 15, third body effects from
the sun, and solar radiation pressure (SRP). In modeling SRP, the area to mass ratio and reflectivity
coefficient of each spacecraft are constant. The initial osculating Keplerian orbital elements of the
chief are [ac ec ic Ωc ωc Mc] = [40 km 0.01 95◦ 0◦ 0◦ 0◦]. These orbital elements are defined with
respect to an inertial frame centered at the asteroid center of mass. The z-axis of this frame is aligned
with the mean spin axis of the asteroid, the x-axis is aligned with the asteroid prime meridian at the
epoch J2000, and the y-axis completes the right-handed triad. In order to achieve passive collision
avoidance between spacecraft, E/I vector separation is used to select the initial quasi-nonsingular
relative orbital elements (ROE) of the deputy.8 The initial osculating ROE of the deputy multiplied
by the chief semi-major axis are ac[δa δλ δex δey δix δiy] = [0 5 0 2 0 2] km. The ROE are defined
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in terms of the chief and deputy spacecraft Keplerian orbital elements as7, 8, 57

δa
δλ
δex
δey
δix
δiy

 =



(ad − ac)/ac
ud − uc + (Ωd − Ωc)cos(ic)
edcos(wd)− eccos(wc)
edsin(wd)− ecsin(wc)

id − ic
(Ωd − Ωc)sin(ic)

 (60)

Here u = M +w is the mean argument of latitude, and the subscripts c and d indicate the chief and
deputy respectively.

Idealized interspacecraft range and range-rate measurements are given by

ρ = ||ρ|| ρ̇ =
ρ̇ · ρ
||ρ||

(61)

where ρ = rd−rc is the position vector of the deputy with respect to the chief. Pixel measurements,
u and v, taken by cameras onboard the chief and deputy spacecraft of visible OpNav features on the
asteroid surface are given by the pin hole camera modeluwvw

w

 = K̂ R
ACI→CF

[
R

ACAF→ACI
−r
] [
L
1

]
(62)

Here r is the spacecraft position vector expressed in the Asteroid Centered Inertial (ACI) frame,
which is aligned with the J2000 reference frame. The OpNav landmark position expressed in the
Asteroid Centered Asteroid Fixed (ACAF) frame is denoted by L. Vectors expressed in the ACAF
frame are expressed in the ACI frame through multiplication with the rotation matrix

ACAF→ACI
R ,

and vectors expressed in the ACI frame are expressed in the Camera Fixed (CF) frame through the
rotation matrix

ACI→CF
R . The matrix of known camera intrinsic parameters K̂ is defined by

K̂ =

fx 0 cx
0 fy cy
0 0 1

 (63)

where fx and fy indicate the camera focal length divided by the pixel pitch in the CF frame x and
y directions respectively. The vector c = [cx cy]

T denotes the principal point in units of pixels.
The simulated camera properties are consistent with the OSIRIS-REx NavCam58 as shown in Table
2. A set of 100 points on the asteroid surface were selected as OpNav features so that multiple
OpNav features are visible at each time step. Pixel measurements of an OpNav feature taken from
a spacecraft camera are only available if the feature is directly illuminated by the sun, is within the
camera field of view, and is not blocked from the camera view by the asteroid. The range, range-
rate, and pixel measurements are simulated every five minutes and are each corrupted by zero-mean
Gaussian white noise with standard deviations of 10 cm, 1 mm/s, and 0.5 pixels respectively.

Table 2: Simulated camera properties.

Camera Number of Pixels Field of View Focal Length

OSIRIS-REx NavCam58 2592x1944 44◦x32◦ 7.6 mm
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Filter

The UKF estimated state is
x = [rTc vTc rTd vTd ]T (64)

where r and v indicate spacecraft position and velocity vectors respectively expressed in the ACI
frame. The subscripts c and d respectively denote the chief and deputy spacecraft. The filter dy-
namics model propagates the state using fourth-order Runge-Kutta numerical integration only tak-
ing into account the two body gravity and J2 of the asteroid. The filter measurement models are
consistent with the reference truth as shown in Eqns. (61) and (62). In each simulation, the initial
1-σ formal uncertainties provided to the filter in position and velocity in each axis are 1 km and 50
mm/s. The exploiting triangular structure (ETS) technique previously developed by the authors is
used in the UKF time update to reduce computation time with no loss of accuracy by reusing sigma
point propagations when possible.4

The described filter is implemented with CM, ASNC, and ADMC. Given that a UKF is used, any
terms in the process noise algorithms containing Φ or H are instead computed using sigma points
and the nonlinear dynamics and measurement models. Each of the process noise techniques is
utilized with a sliding window of 30 time steps, which is a 2.5 hour interval. Since the filter initially
converges very rapidly, adaptation of the process noise covariance is delayed by ten time steps to
minimize the violation of the steady state assumption in each of the process noise algorithms. The
weighting matrix for ASNC and ADMC is approximated as diagonal using Eqn. (41), which allows
for the computationally efficient estimate of Q̃ shown in Eqn. (49). For ASNC, the model of the
DT process noise covariance is approximated using Eqn. (46). For ADMC, α is set to 0.02, and β
is a diagonal matrix with each element on the diagonal equal to 1×10−5 s-1. When using ADMC,
the state in Eqn. (64) is augmented with a set of three empirical accelerations for each spacecraft.

Results

Filter convergence plots of the x-component of the chief position and velocity vectors are pro-
vided in Figure 3. For each process noise technique, the convergence behavior is similar in all three
axes and for each spacecraft. Fluctuations in the formal uncertainty are largely due to the time-
varying number of visible OpNav landmarks. As can be seen in Figure 3 (a), the inherently biased
estimate of the DT process noise covariance provided by CM causes filter inconsistency in the esti-
mated velocity vector. This inconsistency leads to occasional spikes in position error. Conversely,
ASNC and ADMC maintain filter consistency for both position and velocity. These results highlight
the robustness of the proposed algorithms to large and highly correlated process noise.

Table 3: Case study II mean 3D error computed over the last
two orbits and averaged over 1000 Monte Carlo simulations.

CM ASNC ADMC

Position (m) 9.14 4.82 3.89
Velocity (mm/s) 19.1 9.41 8.59

The mean 3D error computed over the last two orbits and averaged over 1000 Monte Carlo simu-
lations is listed in Table 3 for each of the considered process noise techniques. ASNC provided 47%
less error in position and 51% less error in velocity than CM. ADMC yielded a reduction of 19%
in position error and 9% in velocity error over ASNC. Tracking of the unmodeled accelerations
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for ADMC is shown in Figure 6 in the appendix. Although further simulations show that CM is
able to provide consistent estimation when the process noise is smaller than that of this case study,
ASNC consistently provides orbit determination that is at least as accurate and typically 10-30%
more accurate in position than CM. Conversely, ADMC only provides an improvement over CM
and ASNC if the unmodeled accelerations are accurately estimated. This occurs when the measure-
ment uncertainty is small in comparison to the magnitude of the unmodeled accelerations, and the
measurement rate is fast enough to capture the dominant frequency of the unmodeled accelerations.
In additional simulations where the unmodeled accelerations were very weakly observable, ADMC
often overestimated Q̃. In these cases the filter remained consistent, but the navigation accuracy
was worse than when using CM or ASNC. Investigating this behavior is a topic of future research.

(a) CM (b) ASNC (c) ADMC

Figure 3: Filter convergence of a single Monte Carlo run for each considered process noise technique over
the first two orbits of simulation. Black lines show the estimation error of the x-component of the chief
position (top) and velocity (bottom) vectors. The corresponding formal 3-σ bound is given by the red region.

Filter computation time is dominated by propagating the 2n+ 1 sigma points in the time update
where n is the number of state variables. For the state shown in Eqn. (64), there are 25 sigma points.
The number of sigma points increases to 37 when the state is augmented with empirical accelera-
tions. Since the estimated state comprises two spacecraft states, a traditional UKF would propagate
2(2n + 1) spacecraft orbits over the measurement update interval at each filter call. However, the
ETS technique reduces the number of orbit propagations from 50 to 38 for the state shown in Eqn.
(64) and from 74 to 56 when the state is augmented with empirical accelerations. As a result, ETS
reduces filter run time by approximately 24% regardless of which process noise technique is used.
The average run time per filter call for the ETS-UKF when using a fixed process noise covariance
was 66 ms for a MATLAB implementation on a 4 GHz Intel Core i7-6700 processor. CM and ASNC
only incur an additional 3.4×10−3% and 1.0×10−2% in run time respectively. ADMC increases
computation time by about 47% due to the increased number of sigma point propagations.
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CONCLUSIONS

This paper presents two new techniques to accurately estimate Kalman filter process noise online
for robust orbit determination in the presence of dynamics model uncertainties. The limitations of
common orbit determination process noise techniques such as state noise compensation (SNC), dy-
namic model compensation (DMC), and covariance matching (CM) adaptive filtering are overcome
by optimally fusing SNC and DMC with CM. This yields two new techniques called adaptive SNC
(ASNC) and adaptive DMC (ADMC). The adaptability of the developed algorithms is a significant
advantage over SNC and DMC, which require onerous offline tuning and are not applicable if the
process noise varies significantly or the dynamical environment is not well known a priori. The new
techniques also provide improved accuracy and robustness over CM. This improvement occurs be-
cause the developed algorithms guarantee the discrete time (DT) process noise covariance is positive
semi-definite (PSD) without truncating terms, and the DT process noise covariance is constrained
according to the underlying continuous time (CT) dynamical model. Another advantage over CM
is that the developed algorithms are able to accurately extrapolate the DT process noise covariance
over measurement outages. Furthermore, ADMC is well suited for systems with highly colored
process noise. These benefits come at relatively little additional computational cost. ASNC is less
computationally expensive and simpler to implement than ADMC. On the other hand, ADMC pro-
vides superior estimation when the measurement rate and accuracy are sufficient to enable accurate
tracking of the unmodeled accelerations. The proposed algorithms have the potential to improve
orbit determination for Earth missions and are enabling technologies for asteroid missions where
the dynamical environment is poorly known a priori, the process noise is time-varying, and there is
limited human intervention.

Future work for both ASNC and ADMC will include estimating the full CT process noise co-
variance through weighted least squares where the CT process noise covariance is constrained to be
PSD. This is a convex program that can be efficiently solved using interior point methods. Estimat-
ing the full CT process noise covariance instead of just the main diagonal is expected to increase
estimation accuracy in exchange for a higher computational cost. ASNC and ADMC will also be
applied to orbital element states, and fusing SNC and DMC with other adaptive filtering techniques
will be explored. For ADMC, future research will also include eliminating the need for the tunable
forgetting factor. This can likely be accomplished by taking into account how a change in the CT
process noise covariance influences the spacecraft state formal covariance through the time update
at the following filter call. Furthermore, it should be investigated if ADMC can be improved by
estimating the empirical acceleration time correlation constants as part of the filter state and us-
ing higher order empirical acceleration dynamical models such as a second order Gauss-Markov
process.
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APPENDIX: ADDITIONAL FILTER PERFORMANCE PLOTS

(a) No modeled process noise and CM (b) SNC & ASNC, Q̃0 = 108 m/s3/2 (c) DMC & ADMC, Q̃0 = 108 m/s5/2

Figure 4: Case study I initial filter convergence for each considered process noise technique over the first
60 seconds of simulation for a single representative filter run. Solid lines show the true error with the shaded
region of same color representing the corresponding formal 3-σ bound. For SNC, DMC, ASNC, and ADMC
the filter is initialized with a much larger than optimal value of Q̃. ASNC and ADMC converge to a near
optimal value of Q̃.
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(a) Q̃0 = 10−12 m/s5/3 (b) Q̃0 = 0.206 m/s5/3 (c) Q̃0 = 108 m/s5/3

Figure 5: Case study I estimation of the unmodeled acceleration for DMC and ADMC for varying initial
values of Q̃ for a single representative filter run. In case study I, Q̃0 = 0.206 m/s5/3 is optimal for DMC.

Figure 6: Case study II ADMC tracking of the x-component of the chief unmodeled accelerations over the
last two orbits of a single Monte Carlo simulation. Performance was similar in all three axes and for each
spacecraft.
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